Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T21:03:59.910Z Has data issue: false hasContentIssue false

Investigation of effects of Giardia duodenalis on transcellular and paracellular transport in enterocytes using in vitro Ussing chamber experiments

Published online by Cambridge University Press:  14 November 2014

KRISTOFFER R. TYSNES
Affiliation:
Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146, N-0033 Oslo, Norway
LUCY J. ROBERTSON*
Affiliation:
Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146, N-0033 Oslo, Norway
*
* Corresponding author. Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146, N-0033 Oslo, Norway. E-mail: [email protected]

Summary

The mechanisms by which different genotypes of Giardia duodenalis result in different symptoms remain unresolved. In particular, we lack detailed knowledge on which transport mechanisms (transcellular or paracellular) are affected by different Giardia isolates. Using horse radish peroxidase (HRP) and creatinine as transcellular and paracellular probes, respectively, we developed a robust assay that can be used with an Ussing chamber to investigate epithelial transport, as well as short-circuit current as an indicator of net ion transport. We investigated 2 Giardia isolates, both Assemblage A, one a lab-adapted strain and the other a field isolate. Results indicate that products from sonicated Giardia trophozoites increase both transcellular and paracellular transport. A non-significant increase in transepithelial electrical resistance (TEER) and short-circuit current were also noted. The paracellular transport was increased significantly more in the field isolate than in the lab-adapted strain. Our results indicate that while both transcellular and paracellular transport mechanisms may be increased following exposure of cells to Giardia trophozoite sonicate, perhaps by inducing non-specific increases in cellular traffic, it is important that in vitro studies of Giardia pathophysiology are conducted with different Giardia isolates, not just lab-attenuated strains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Mekhlafi, H. M., Al-Maktari, M. T., Jani, R., Ahmed, A., Anuar, T. S., Moktar, N., Mahdy, M. A., Lim, Y. A., Mahmud, R. and Surin, J. (2013). Burden of Giardia duodenalis infection and its adverse effects on growth of schoolchildren in rural Malaysia. PLoS Neglected Tropical Diseases 7, e2516.CrossRefGoogle ScholarPubMed
Anderson, R. C., Cookson, A. L., McNabb, W. C., Park, Z., McCann, M. J., Kelly, W. J. and Roy, N. C. (2010). Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology 10, 316.CrossRefGoogle ScholarPubMed
Astiazaran-Garcia, H., Lopez-Teros, V., Valencia, M. E., Vazquez-Ortiz, F., Sotelo-Cruz, N. and Quihui-Cota, L. (2010). Giardia lamblia infection and its implications for vitamin A liver stores in school children. Annals of Nutrition and Metabolism 57, 228233.Google Scholar
Bartelt, L. A., Roche, J., Kolling, G., Bolick, D., Noronha, F., Naylor, C., Hoffman, P., Warren, C., Singer, S. and Guerrant, R. (2013). Persistent G. lamblia impairs growth in a murine malnutrition model. Journal of Clinical Investigation 123, 26722684.Google Scholar
Bartley, P. M., Wright, S., Sales, J., Chianini, F., Buxton, D. and Innes, E. A. (2006). Long-term passage of tachyzoites in tissue culture can attenuate virulence of Neospora caninum in vivo . Parasitology 133, 421432.Google Scholar
Beatty, J. K., Bhargava, A. and Buret, A. G. (2014). Post-infectious irritable bowel syndrome: mechanistic insights into chronic disturbances following enteric infection. World Journal of Gastroenterology: WJG 20, 39763985.Google Scholar
Bilenko, N., Levy, A., Dagan, R., Deckelbaum, R. J., El-On, Y. and Fraser, D. (2004). Does co-infection with Giardia lamblia modulate the clinical characteristics of enteric infections in young children? European Journal of Epidemiology 19, 877883.CrossRefGoogle ScholarPubMed
Cevallos, A., Carnaby, S., James, M. and Farthing, J. G. (1995). Small intestinal injury in a neonatal rat model of giardiasis is strain dependent. Gastroenterology 109, 766773.Google Scholar
Chavez, B., Knaippe, F., Gonzalez-Mariscal, L. and Martinez-Palomo, A. (1986). Giardia lamblia: electrophysiology and ultrastructure of cytopathology in cultured epithelial cells. Experimental Parasitology 61, 379389.Google Scholar
Chavez, B., Gonzalez-Mariscal, L., Cedillo-Rivera, R. and Martinez-Palomo, A. (1995). Giardia lamblia: in vitro cytopathic effect of human isolates. Experimental Parasitology 80, 133138.Google Scholar
Chen, T. L., Chen, S., Wu, H. W., Lee, T. C., Lu, Y. Z., Wu, L. L., Ni, Y. H., Sun, C. H., Yu, W. H., Buret, A. G. and Yu, L. C. (2013). Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathogens 5, 26.Google Scholar
Cotton, J. A., Beatty, J. K. and Buret, A. G. (2011). Host parasite interactions and pathophysiology in Giardia infections. International Journal for Parasitology 41, 925933.Google Scholar
Fisher, B. S., Estrano, C. E. and Cole, J. A. (2013). Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system. PLoS ONE 8, e81104.Google Scholar
Fossati, P., Prencipe, L. and Berti, G. (1983). Enzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement. Clinical Chemistry 29, 14941496.Google Scholar
Glotfelty, L. A., Zahs, A., Iancu, C., Shen, L. and Hecht, G. A. (2014). Microtubules are required for efficient epithelial tight junction homeostasis and restoration. American Journal of Physiology. Cell Physiology 307(3), 245254. doi: ajpcell.00336.2013.Google Scholar
Gorowara, S., Ganguly, N. K., Mahajan, R. C. and Walia, B. N. (1992). Study on the mechanism of Giardia lamblia induced diarrhoea in mice. Biochimica et Biophysica Acta 1138, 122126.Google Scholar
Hanevik, K., Dizdar, V., Langeland, N. and Hausken, T. (2009). Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterology 9, 27.Google Scholar
Hess, M., Liebhart, D., Grabensteiner, E. and Singh, A. (2008). Cloned Histomonas meleagridis passaged in vitro resulted in reduced pathogenicity and is capable of protecting turkeys from histomonosis. Vaccine 26, 41874193.Google Scholar
Heyman, M., Crain-Denoyelle, A. M., Nath, S. K. and Desjeux, J. F. (1990). Quantification of protein transcytosis in the human colon carcinoma cell line CaCo-2. Journal of Cellular Physiology 143, 391395.CrossRefGoogle ScholarPubMed
Humen, M. A., Perez, P. F. and Lievin-Le Moal, V. (2011). Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cellular Microbiology 13, 16831702.Google Scholar
Kipp, H., Khoursandi, S., Scharlau, D. and Kinne, R. K. (2003). More than apical: distribution of SGLT1 in Caco-2 cells. American Journal of Physiology. Cell Physiology 285, C737C749.Google Scholar
Koh, W. H., Geurden, T., Paget, T., O'Handley, R., Steuart, R. F., Thompson, R. C. and Buret, A. G. (2013). Giardia duodenalis assemblage-specific induction of apoptosis and tight junction disruption in human intestinal epithelial cells: effects of mixed infections. Journal of Parasitology 99, 353358.Google Scholar
Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., Wu, Y., Sow, S. O., Sur, D., Breiman, R. F., Faruque, A. S., Zaidi, A. K., Saha, D., Alonso, P. L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J. B., Omore, R., Oundo, J. O., Hossain, A., Das, S. K., Ahmed, S., Qureshi, S., Quadri, F., Adegbola, R. A., Antonio, M. et al. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209222.Google Scholar
Lucas, M. L. (2005). Amendments to the theory underlying Ussing chamber data of chloride ion secretion after bacterial enterotoxin exposure. Journal of Theoretical Biology 234, 2137.Google Scholar
Magalhaes, R. D., Duarte, M. C., Mattos, E. C., Martins, V. T., Lage, P. S., Chavez-Fumagalli, M. A., Lage, D. P., Menezes-Souza, D., Regis, W. C., Manso Alves, M. J., Soto, M., Tavares, C. A., Nagen, R. A. and Coelho, E. A. (2014). Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Neglected Tropical Diseases 8, e2764.Google Scholar
Mahmood, S., Ganguly, N. K., Mahajan, R. C. and Walia, B. N. (1990). Stimulation of the absorption of macromolecules in Giardia lamblia infected mice intestine. Indian Journal of Medical Research 91, 218222.Google Scholar
Maia-Brigagao, C., Morgado-Diaz, J. A. and De Souza, W. (2012). Giardia disrupts the arrangement of tight, adherens and desmosomal junction proteins of intestinal cells. Parasitology International 61, 280287.Google Scholar
Meyer, E. A. and Pope, B. L. (1965). Culture in vitro of Giardia trophozoites from the rabbit and chinchilla. Nature 207, 14171418.Google Scholar
Morch, K., Hanevik, K., Rivenes, A. C., Bodtker, J. E., Naess, H., Stubhaug, B., Wensaas, K. A., Rortveit, G., Eide, G. E., Hausken, T. and Langeland, N. (2013). Chronic fatigue syndrome 5 years after giardiasis: differential diagnoses, characteristics and natural course. BMC Gastroenterology 13, 28.CrossRefGoogle ScholarPubMed
Moreira, N., Vitoriano-Souza, J., Roatt, B. M., Vieira, P. M., Ker, H. G., de Oliveira Cardoso, J. M., Giunchetti, R. C., Carneiro, C. M., de Lana, M. and Reis, A. B. (2012). Parasite burden in hamsters infected with two different strains of leishmania (Leishmania) infantum: “Leishman Donovan units” versus real-time PCR. PLoS ONE 7, e47907.Google Scholar
Muhsen, K., Cohen, D. and Levine, M. M. (2014). Can Giardia lamblia infection lower the risk of acute diarrhea among preschool children? Journal of Tropical Pediatrics 60, 99103.Google Scholar
Natoli, M., Leoni, B. D., D'Agnano, I., Zucco, F. and Felsani, A. (2012). Good Caco-2 cell culture practices. Toxicology in Vitro: an International Journal Published in Association with BIBRA 26, 12431246.CrossRefGoogle ScholarPubMed
Orden, A. B., Apezteguia, M. C., Ciarmela, M. L., Molina, N. B., Pezzani, B. C., Rosa, D. and Minvielle, M. C. (2014). Nutritional status in parasitized and nonparasitized children from two districts of Buenos Aires, Argentina. American Journal of Human Biology: The Official Journal of the Human Biology Council 26, 7379.Google Scholar
Pappenheimer, J. R. (1990). Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. American Journal of Physiology 259, G290G299.Google Scholar
Ramos, C. L., Thorsen, L., Schwan, R. F. and Jespersen, L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiology 36, 2229.Google Scholar
Salama, N. N., Fasano, A., Lu, R. and Eddington, N. D. (2003). Effect of the biologically active fragment of zonula occludens toxin, delta G, on the intestinal paracellular transport and oral absorption of mannitol. International Journal of Pharmaceutics 251, 113121.Google Scholar
Salama, N. N., Fasano, A., Thakar, M. and Eddington, N. D. (2004). The effect of delta G on the transport and oral absorption of macromolecules. Journal of Pharmaceutical Sciences 93, 13101319.Google Scholar
Suzuki, T., Matsuzaki, T., Hagiwara, H., Aoki, T., Tajika-Takahashi, Y. and Takata, K. (2006). Apical localization of sodium-dependent glucose transporter SGLT1 is maintained by cholesterol and microtubules. Acta Histochemica et Cytochemica 39, 155161.CrossRefGoogle ScholarPubMed
Teoh, D. A., Kamieniecki, D., Pang, G. and Buret, A. G. (2000). Giardia lamblia rearranges F-actin and alpha-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. Journal of Parasitology 86, 800806.Google Scholar
Troeger, H., Epple, H. J., Schneider, T., Wahnschaffe, U., Ullrich, R., Burchard, G. D., Jelinek, T., Zeitz, M., Fromm, M. and Schulzke, J. D. (2007). Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56, 328335.Google Scholar
Turner, J. R., Cohen, D. E., Mrsny, R. J. and Madara, J. L. (2000). Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by Na+-glucose cotransport. Digestive Diseases and Sciences 45, 21222126.Google Scholar
Wallon, C., Braaf, Y., Wolving, M., Olaison, G. and Soderholm, J. D. (2005). Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scandinavian Journal of Gastroenterology 40, 586595.Google Scholar
Yu, L. C., Huang, C. Y., Kuo, W. T., Sayer, H., Turner, J. R. and Buret, A. G. (2008). SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. International Journal for Parasitology 38, 923934.CrossRefGoogle ScholarPubMed
Zweibaum, A., Laburthe, M., Grasset, E. and Louvard, D. (2011). Use of Cultured Cell Lines in Studies of Intestinal Cell Differentiation and Function. In Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion (ed. Schultz, Stanley G., Field, Michael, Frizzell, Raymond A., and Rauner, Brenda B.) American Physiological Society. pp. 223. Wiley-Blackwell, Oxford University Press.Google Scholar