Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:30:21.517Z Has data issue: false hasContentIssue false

Investigating over-dispersion; Moniliformis (Acanthocephala) and rats

Published online by Cambridge University Press:  06 April 2009

D. W. T. Cromptom
Affiliation:
Department of Parasitology, Molteno Institute, Downing Street, Cambridge CB2 3EE
A. E. Keymer
Affiliation:
Department of Parasitology, Molteno Institute, Downing Street, Cambridge CB2 3EE
S. E. Arnold
Affiliation:
Department of Parasitology, Molteno Institute, Downing Street, Cambridge CB2 3EE

Summary

An analysis of the frequency distribution of numbers of Moniliformis dubius in rats of an outbred strain of Wistar origin (CFHB) and feeding ad libitum on Oxoid 41B diet, showed that over-dispersion occurred regardless of the age and sex of the rats and the infective dose given (12, 20 or 40 cystacanths/rat). Over-dispersion was also shown to be independent of variability in the age and sex of the cystacanths given. The analysis demonstrated that the over-dispersion declined as the course of the infection proceeded. As expected, parasite survival was found to be age-dependent with female worms living longer, on average, than males, and both male and female worms living longer in rats given 12 as opposed to 20 cystacanths. Possible mechanisms for generating the over-dispersion observed during this work are discussed and a tentative hypothesis, invoking host heterogeneity with regard to carbohydrate availability in the small intestine, is proposed for further experimental investigation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1974). Population dynamics of the cestode Caryophyllaeus laticeps (Pallas, 1781) in the bream (Abramis brama L.). Journal of Animal Ecology 43, 305–21.CrossRefGoogle Scholar
Anderson, R. M. (1982). Parasite dispersion patterns: generative mechanisms and dynamic consequences. In Aspects of Parasitology (ed. Meerovitch, E.), pp. 140. Montreal: Institute of Parasitology, McGill University.Google Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. (1982). Variability in the abundance of animal and plant species. Nature, London 296, 245–8.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host-parasite population interactions: I Regulatory processes. Journal of Animal Ecology 47, 219–48.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases: Part I. Nature, London 280, 361–7.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982). Populations dynamics of human helminth infections: control by chemotherapy. Nature, London 297, 557–63.CrossRefGoogle ScholarPubMed
Anderson, R. M., Whitfield, P. J. & Dobson, A. P. (1978). Experimental studies on infection dynamics: infection of the definitive host by the cercariae of Transversotrema patialense. Parasitology 77, 189200.CrossRefGoogle ScholarPubMed
Anderson, J. (1974). Immunity to the acanthocephalan Moniliformis dubius infections in rats. Norwegian Journal of Zoology 148, 391426.Google Scholar
Atkinson, K. H. & Byram, J. E. (1976). The structure of the ovarian ball and oogenesis in Moniliformis dubius (Acanthocephala). Journal of Morphology 148, 391426.CrossRefGoogle Scholar
Bailey, N. T. J. (1964). The Elements of Stochastic Processes. London: John Wiley.Google Scholar
Bliss, C. I. & Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data and a note on the efficient fitting of the negative binomial. Biometrics 9, 176200.CrossRefGoogle Scholar
Boswell, M. T. & Patil, G. P. (1970). Chance mechanisms generating negative binomial distributions. In Random Counts in Models and Structures (ed. Patil, G. P.). London: Pennsylvania State University Press.Google Scholar
Burlingame, P. L. & Chandler, A. C. (1941). Host–parasite relations of Moniliformis dubius (Acanthocephala) in albino rats, and the environmental nature of resistance to single and superimposed infections with this parasite. American Journal of Hygiene 33, 121.Google Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 63, 343–64.CrossRefGoogle Scholar
Croll, N. A. & Ghadirian, E. (1981). Wormy persons: contributions to the nature and patterns of overdispersion with Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus and Trichuris trichiura. Tropical and Geographical Medicine 33, 241–8.Google Scholar
Crompton, D. W. T., Keymer, A. E., Singhvi, A. & Nesheim, M. C. (1983). Rat-dietary fructose and the intestinal distribution and growth of Moniliformis (Acanthocephala). Parasitology 86, 5771.CrossRefGoogle ScholarPubMed
Crompton, D. W. T., Singhvi, A. & Keymer, A. E. (1982). Effects of host dietary fructose on experimentally stunted Moniliformis (Acanthocephala). International Journal for Parasitology 12, 117–21.CrossRefGoogle ScholarPubMed
Crompton, D. W. T., Singhvi, A., Nesheim, M. C. & Walters, D. E. (1981). Competition for dietary fructose between Moniliformis (Acanthocephala) and growing rats. International Journal for Parasitology 11, 457–61.CrossRefGoogle ScholarPubMed
Crompton, D. W. T. & Walters, D. E. (1972). An analysis of the course of infection of Moniliformis dubius (Acanthocephala) in rats. Parasitology 64, 517–23.CrossRefGoogle ScholarPubMed
Fujita, M., Ohta, H., Kawai, K., Matsui, H. & Nakao, M. (1972). Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim. biophys. acta 274, 336–47.CrossRefGoogle ScholarPubMed
Fujita, M., Ohta, H. & Uezato, T. (1981). Characterization of brush borders purified in iso-osmotic medium and microvillar membranes from mouse small intestine. Biochemical Journal 196, 669–73.CrossRefGoogle ScholarPubMed
Gordon, D. M. & Rau, M. E. (1982). Possible evidence for mortality induced by the parasite Apatemon gracilis in a population of brook sticklebacks Culaea inconstans. Parasitology 84, 41–7.CrossRefGoogle Scholar
Herman, R. H. (1974). Hydrolysis and absorption of carbohydrates, and adaptive responses of the jejunum. In Sugars in Nutrition (ed. Sipple, H. L. and McNutt, K. W.), pp. 145–72. New York: Academic Press.Google Scholar
Hirsch, R. P. (1980). Distribution of Polymorphus minutus among its intermediate hosts. International Journal for Parasitology 10, 243–8.CrossRefGoogle ScholarPubMed
Horvath, K. (1971). Glycogen metabolism in larval Moniliformis dubius (Acanthocephala). Journal of Parasitology 57, 132–6.CrossRefGoogle Scholar
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective-stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
Lackie, J. M. (1972). The course of infection and growth of Moniliformis dubius (Acanthocephala) in the intermediate host Periplaneta americana. Parasitology 64, 95106.CrossRefGoogle ScholarPubMed
Li, S. Y. & Hsu, H. F. (1951). On the frequency distribution of parasitic helminths in their naturally infected hosts. Journal of Parasitology 37, 3241.CrossRefGoogle ScholarPubMed
Lifshitz, F. (1980). Carbohydrate malabsorption. In Clinical Disorders in Pediatric Gastroenterology and Nutrition (ed. Lifshitz, F.), pp. 229–47. New York and Basel: Marcel Dekker, Inc.Google Scholar
Martin, J., Keymer, A. E., Isherwood, R. J. & Wainwright, S. M. (1983). The prevalence and intensity of Ascaris lumbricoides in children from rural Bangladesh. Transactions of the Royal Society of Hygiene and Tropical Medicine (in the Press).CrossRefGoogle Scholar
May, R. M. (1977). Dynamical aspects of host–parasite associations: Crofton's model revisited. Parasitology 75, 259–76.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host–parasite population interactions. II Destabilizing processes. Journal of Animal Ecology 47, 249–68.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1979). Population biology of infectious diseases: Part II. Nature, London 280, 455–61.CrossRefGoogle ScholarPubMed
Miremad-Gassmann, M. (1981). Contribution a Ia connaissance de Ia biologie de Moniliformis moniliformis Bremser, 1811 (Acanthocephala). Influence de Ia résistance de l'hôte, Rattus norvegicus Berkenhoust, 1769, sur le parasite. Annales de Parasitologie (Paris) 56, 407–21.Google Scholar
Nesheim, M. C., Crompton, D. W. T., Arnold, S. & Barnard, D. (1977). Dietary relations between Moniliformis (Acanthocephala) and laboratory rats. Proceedings of the Royal Society of London, B 197, 363–83.Google ScholarPubMed
Oxoid (1977). Laboratory Animal Diets. Oxoid Ltd, Basingstoke.Google Scholar
Parshad, V. R., Crompton, D. W. T. & Nesheim, M. C. (1980). The growth of Moniliformis (Acanthocephala) in rats fed on various monosaccharides and disaccharides. Proceedings of the Royal Society of London, B 209, 299315.Google ScholarPubMed
Pennycuick, L. (1971). Frequency distributions of parasites in a population of three-spined sticklebacks, Gasterosteus aculeatus L., with particular reference to the negative binomial distribution. Parasitology 63, 389406.CrossRefGoogle Scholar
Rau, M. E. (1979). The frequency distribution of Hymenolepis diminuta cysticercoids in natural, sympatric populations of Tenebrio molitor and T. obscurus. International Journal for Parasitology 9, 85–7.CrossRefGoogle Scholar
Read, C. P. & Rothman, A. H. (1958). The carbohydrate requirement of Moniliformis (Acanthocephala). Experimental Parasitology 7, 191–7.CrossRefGoogle ScholarPubMed
Reyna Robles, R. (1969). Studies on the Dispersion of Insect Populations. Ph.D thesis, University of London.Google Scholar
Scott, M. E. (1982). Reproductive potential of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata). Parasitology 85, 217–36.CrossRefGoogle Scholar
Starling, J. A. & Fisher, F. M. (1975). Carbohydrate transport in Moniliformis dubius (Acanthocephala). I The kinetics and specificity of hexose absorption. Journal of Parasitology 61, 977–90.CrossRefGoogle ScholarPubMed
Starling, J. A. & Fisher, F. M. (1978). Carbohydrate transport in Moniliformis dubius (Acanthocephala). II Post-absorptive phosphorylation of glucose and the role of trehalose in accumulation of endogenous glucose reserves. Journal of Comparative Physiology 126, 223–31.CrossRefGoogle Scholar
Starling, J. A. & Fisher, F. M. (1979). Carbohydrate transport in Moniliformis dubius (Acanthocephala). III Post-absorptive fate of fructose, mannose and galactose. Journal of Parasitology 65, 813.CrossRefGoogle ScholarPubMed
Tanner, C. E., Curtis, M. A., Sole, T. D. & Gyapay, K. (1981). The nonrandom, negative binomial distribution of experimental trichinellosis in rabbits. Journal of Parasitology 66, 802–5.CrossRefGoogle Scholar
Uznanski, R. L. & Nickol, B. B. (1982). Site selection, growth and survival of Leptorhynchoides thecatus (Acanthocephala) during the prepatent period in Lepomis cyanellus. Journal of Parasitology 68, 686–90.CrossRefGoogle Scholar