Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T10:16:07.396Z Has data issue: false hasContentIssue false

Invertebrate immunity

Published online by Cambridge University Press:  06 April 2009

Ann M. Lackie
Affiliation:
Department of Zoology, The University, Glasgow G12 8QQ

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirante, G. A. & Mazzalai, F. G. (1978). Synthesis and localisation of hemoagglutinins in hemocytes of cockroach Leucophaea maderas L. Developmental and Comparative Immunology 2, 435–40.CrossRefGoogle Scholar
Anderson, R. S. (1971). Cellular responses to foreign bodies in the tunicate Molgula manhattensis (DeKay). Biological Bulletin, Woods Hole 141, 91–8.CrossRefGoogle Scholar
Anderson, R. S. (1975). Phagocytosis by invertebrate cells in vitro: biochemical events and other characteristics compared with vertebrate phagocytic systems. In Invertebrate Immunity (ed. Maramorosch, K. and Shope, R. E.). New York and London: Academic Press.Google Scholar
Anderson, R. S. & Cook, M. L. (1979). Induction of lysozyme-like activity in the hemolymph and hemocytes of an insect, Spodoptera eridania. Journal of Invertebrate Pathology 33, 197203.CrossRefGoogle Scholar
Aston, W. P. & Chadwick, J. S. (1978). Time and dose studies of the effect of cobra venom factor on the in vivo immune response in Galleria mellonella to Pseudomonas aeruginosa. Developmental and Comparative Immunology 2, 425–34.CrossRefGoogle ScholarPubMed
Baldo, B. A. & Uhlendruck, G. (1975). Tridaonin, a potent anti-galactan precipitin from the hemolymph of Tridaena maxima (Röding). In Immunologic Phylogeny (ed. Hildemann, W. H. and Benedict, A. A.). Advances in Experimental Medicine and Biology, vol 84. New York and London: Plenum Press.Google Scholar
Bertheussen, K. (1979). The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Experimental Cell Research 120, 373–82.CrossRefGoogle ScholarPubMed
Bertheussen, K. & Seljelid, R. (1978). Echinoid phagocytes in vitro. Experimental Cell Research 111, 401–12.CrossRefGoogle ScholarPubMed
Boiledieu, D. & Valembois, P. (1977). Natural cytotoxic activity of sipunculid leukocytes on allogenic and xenogenic erythrocytes. Developmental and Comparative Immunology 1, 207–16.CrossRefGoogle ScholarPubMed
Boman, H. G., Faye, I., Pye, A. & Rasmuson, T. (1978). The inducible immunity system of Giant Silk Moths. In Comparative Pathobiology, vol. 4 (ed. Bulla, L. A. and Cheng, T. C.). New York and London: Plenum Press.Google Scholar
Chadwick, J. S. (1975). Hemolymph changes with infection or induced immunity in insects and ticks. In Invertebrate Immunity (ed. Maramorosch, K. and Shope, R. E.). New York and London: Academic Press.Google Scholar
Cheng, T. C. (1975). Functional morphology and biochemistry of molluscan phagocytes. Annals of the New York Academy of Sciences 266, 343–79.CrossRefGoogle ScholarPubMed
Cheng, T. C. (1976). Beta-glucuronidase in the serum and hemolymph cells of Mercenaria mercenaria and Crassostrea virginica (Mollusea: Pelecypoda). Journal of Invertebrate Pathology 27, 125–8.CrossRefGoogle ScholarPubMed
Cheng, T. C., Chorney, M. J. & Yoshino, T. P. (1977). Lysozyme-like activity in the hemolymph of Biomphalaria globrata challenged with bacteria. Journal of Invertebrate Pathology 29, 170–4.CrossRefGoogle Scholar
Cheng, T. C. & Garrabrant, T. A. (1977). Acid phosphatase in granulocytic capsules formed in strains of Biomphalaria globrata totally and partially resistant to Schistosoma mansoni. International Journal for Parasitology 7, 467–72.CrossRefGoogle Scholar
Coffaro, K. A. & Hinegardner, R. T. (1977). Immune response in the sea urchin Lytechinus pictus. Science 197, 1389–90.CrossRefGoogle ScholarPubMed
Cohen, E., Rozenberg, M. & Massaro, E. J. (1974). Agglutinins of Limulus polyphemus (Horseshoe crab) and Birgus latro (coconut crab). Annals of the New York Academy of Sciences 234, 2833.CrossRefGoogle ScholarPubMed
Cooper, E. L. (1968). Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestria and Eisenia foetida. Transplantation 6, 322–37.CrossRefGoogle Scholar
Cooper, E. L. (1973). Evolution of cellular immunity. In ‘Non-specific’ Factors Influencing Host Resistance (ed. Braun, W. and Ungar, J.). Basel: Karger.Google Scholar
Cooper, E. L. (1976). Comparative Immunology. New Jersey: Prentice-Hall.Google Scholar
Crompton, D. W. T. (1967). Studies on the haemocytic reaction of Cammarus species and its relationship to Polymorphus minutus (Acanthocephala). Parasitology 57, 389401.CrossRefGoogle Scholar
Curtis, A. S. G. (1978). Individuality and graft rejection in sponges or, a cellular basis for individuality in sponges. In Biology and Systematics of Colonial Organisms (ed. Larwood, G. and Rosen, B. R.). London and New York: Academic Press.Google Scholar
Cushing, J. E. & Boraker, D. K. (1975). Some specific aspects of cell-surface recognition by sipunculid coelomocytes. In Immunologic Phylogeny. Advances in Experimental Medicine and Biology, vol. 64 (ed. Hildemann, W. H. and Benedict, A. A.). New York and London: Plenum Press.CrossRefGoogle Scholar
Dales, R. P. (1978 a). The basis of graft rejection in the earthworms Lumbricus terrestris and Eisenia foetida. Journal of Invertebrate Pathology 32, 264–77.CrossRefGoogle Scholar
Dales, R. P. (1978 b). Second-set graft rejections: do they occur in invertebrates? Symposium of the Society for Experimental Biology 32, 203–19.Google ScholarPubMed
Day, N. K. B., Gewurz, H., Johannsen, R., Finstad, J. & Good, R. A. (1970). Complement and complement-like activity in lower vertebrates and invertebrates. Journal of Experimental Medicine 132, 941–50.CrossRefGoogle ScholarPubMed
Duprat, P. (1964). Mise en evidence de reaction immunitaire dans les homogreffes de paroi du corps chez le lombricien Eisenia foetida typica. Comptes rendus hebdomadaires des séances de l' Académie des Sciences, Paris 259, 4177–9.Google ScholarPubMed
Evans, E. E., Weinheimer, P. F., Painter, B., Acton, R. T. & Evans, M. L. (1969). Secondary and tertiary responses of the induced bactericidin from the West Indian spiny lobster, Panulirus argus. Journal of Bacteriology 98, 943–6.CrossRefGoogle ScholarPubMed
Fontaine, A. R. & Lambert, P. (1977). The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Canadian Journal of Zoology 55, 1530–44.CrossRefGoogle ScholarPubMed
Freeman, G. (1970). Transplantation specificity in echinoderms and lower chordates. Transplantation Proceedings 2, 236–9.Google ScholarPubMed
Grimstone, W. B., Rotheram, S. & Salt, G. (1967). An electron microscope study of capsule formation by insect blood cells. Journal of Cell Science 2, 281–92.CrossRefGoogle ScholarPubMed
Gupta, A. R. (1979). Insect Hemocytes: Development, Forms, Functions and Techniques. Cambridge University Press.CrossRefGoogle Scholar
Hall, J. L. & Rowlands, D. T. (1974). Heterogeneity of lobster agglutinins. II. Specificity of agglutinin-erythrocyte binding. Biochemistry 13, 828–33.CrossRefGoogle ScholarPubMed
Hardy, S. W., Fletcher, T. C. & Olafsen, J. A. (1977). Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas. In Developmental Immunobiology (ed. Solomon, J. B. and Horton, J. D.). Amsterdam: Elsevier/North-Holland.Google Scholar
Harris, K. R. (1975). The fine structure of encapsulation in Biomphalaria globrata. Annals of the New York Academy of Science 266, 446–64.CrossRefGoogle Scholar
Hildemann, W. H. & Dix, T. G. (1972). Transplantation reactions of tropical Australian echinoderms. Transplantation 14, 624–33.CrossRefGoogle ScholarPubMed
Hildemann, W. H., Raison, R. L., Cheung, G., Hull, C. J., Akaka, L. & Okamoto, J. (1977). Immunological specificity and memory in a scleractinian coral. Nature, London 270, 219–23.CrossRefGoogle Scholar
Hostetter, R. K. & Cooper, E. L. (1972). Coelomocytes as effector cells in earthworm immunity. Immunological Communications 1, 155–83.CrossRefGoogle ScholarPubMed
Hostetter, R. K. & Cooper, E. L. (1974). Earthworm coelomocyte immunity. In Contemporary Topics in Immunobiology, vol. 4 (ed. Cooper, E. L.). Plenum Press.Google Scholar
Ishayama, I. & Uhlenbruck, G. (1972). Further studies on the specificity of the anti-A agglutinin from Helix pomatia. Comparative Biochemistry and Physiology A 42, 269–76.CrossRefGoogle Scholar
Johnson, P. T. & Chapman, F. A. (1970 a). Infection with diatoms and other microorganisms in sea urchin spines (Stronglyocentrotus franciscanus). Journal of Invertebrate Pathology 16, 268–76.CrossRefGoogle Scholar
Johnson, P. T. & Chapman, F. A. (1970 b). Comparative studies on the in vitro response of bacteria to invertebrate body fluids. II. Aplysia californica (sea-hare) and Ciona intestinalis (tunicate). Journal of Invertebrate Pathology 16, 127–38.CrossRefGoogle Scholar
Karp, R. D. & Hildemann, W. H. (1976). Specific allograft reactivity in the seastar Dermasterias imbricata. Transplantation 22, 434–9.CrossRefGoogle Scholar
Kassim, O. O. & Richards, C. S. (1978). Biomphalaria globrata: lysozyme activities in the hemolymph, digestive gland and headfoot of the intermediate host of Schistosoma mansoni. Experimental Parasitology 46, 218–24.CrossRefGoogle Scholar
Lackie, A. M. (1976). Evasion of the haemocytic defence reaction of certain insects by larvae of Hymenolepis diminuta (Cestoda). Parasitology 73, 97107.CrossRefGoogle ScholarPubMed
Lackie, A. M. (1979). Cellular recognition of foreign-ness in two insect species, the American cockroach and the desert locust. Immunology 36, 909–14.Google ScholarPubMed
Lackie, A. M. & Lackie, J. M. (1979). Evasion of the insect immune response by Moniliformis dubius (Acanthocephala): further observations on the origin of the envelope. Parasitology 79, 297301.CrossRefGoogle ScholarPubMed
Lackie, J. M. (1975). The host specificity of Moniliformis dubius, (Acanthocephala), a parasite of cockroaches. International Journal for Parasitology 5, 301–7.CrossRefGoogle ScholarPubMed
Langlet, C. & Bierne, J. (1977). The immune response to xenografts in nemertines of the genus Lineus. In Developmental Immunobiology (ed. Solomon, J. B. and Horton, J. D.). Amsterdam and Oxford: Elsevier/North-Holland.Google Scholar
Lie, K. J. & Heyneman, D. (1976). Studies on resistance in snails. 6. Escapo of Echinostoma lindoense sporocysts from encapsulation in the snail heart and subsequent loss of the host's ability to resist infection, by the same parasite. Journal of Parasitology 62, 298302.CrossRefGoogle ScholarPubMed
Lie, K. J. & Heyneman, D. (1977). Schistosoma mansoni, Echinostoma lindoense, and Paryphostomum segregatum: interference by trematode larvae with acquired resistance insnails, Biomphalaria globrata. Experimental Parasitology 42, 343–7.CrossRefGoogle Scholar
Lie, K. J., Heyneman, D. & Jeong, K. H. (1976 a). Studies on resistance in snails. 4. Induction of ventricular capsules and changes in the amoebocyte-producing organ during sensitization in Biomphalaria globrata snails. Journal of Parasitology 62, 286–91.CrossRefGoogle Scholar
Lie, K. J., Heyneman, D. & Jeong, K. H. (1976 b). Studies on resistance in snails. 7. Evidence of interference with the defence reaction in Biomphalaria globrata by trematode larvae. Journal of Parasitology 62, 608–15.CrossRefGoogle Scholar
Lie, K. J., Heyneman, D. & Lim, H. K. (1975). Studies on resistance in snails: specific resistance induced by irradiated miracidia of Echinostoma lindoense in Biomphalaria globrata snails. International Journal for Parasitology 5, 627–31.CrossRefGoogle Scholar
Loker, E. S. (1918). Schistosomatium douthitti: exposure of Lymnaea catascopium to irradiated miracidia. Experimental Parasitology 46, 134–40.CrossRefGoogle Scholar
McDade, J. E. & Tripp, M. R. (1967). Mechanisms of agglutination of red blood cells by oyster hemolymph. Journal of Invertebrate Pathology 9, 523–30.CrossRefGoogle ScholarPubMed
McHenery, J. G., Birkbeck, T. H. & Allen, J. A. (1979). Occurrence of lysozyme in marine bivalves. Comparative Biochemistry and Physiology B 63, 25–8.Google Scholar
Moscona, A. A. (1968). Cell aggregation: properties of specific cell-ligands and their role in the formation of multicellular systems. Developmental Biology 18, 250–77.CrossRefGoogle ScholarPubMed
Nappi, A. J. (1975). Parasite encapsulation in insects. In Invertebrate Immunity (ed. Maramorosch, K. and Shope, R. E.). New York and London: Academic Press.Google Scholar
Natori, S. (1977). Bactericidal substance induced in the haemolymph of Sarcophaga peregrina larvae. Journal of Insect Physiology 23, 1169–73.CrossRefGoogle Scholar
Parish, C. R. (1977). Simple model for self- non-self discrimination in invertebrates. Nature, London 267, 711–13.CrossRefGoogle ScholarPubMed
Parry, M. J. (1976). Evidence of mitotic division of coelomocytes in the normal, wounded and grafted earthworm Eisenia foetida. Experientia 32, 449–50.CrossRefGoogle Scholar
Parry, M. J. (1978). Survival of body wall autografts, allografts and xenografts in. the earthworm, Eisenia foetida. Journal of Invertebrate Pathology 31, 383–8.CrossRefGoogle ScholarPubMed
Pauley, G. B., Krassner, S. M. & Chapman, F. A. (1971). Bacterial clearance in the California seahare Aplysia californica. Journal of Invertebrate Pathology 18, 227–39.CrossRefGoogle Scholar
Pistole, T. G. (1978). Broad-spectrum bacterial agglutinating activity in the serum of the Horseshoe crab, Limulus polyphemus. Developmental and Comparative Immunology 2, 6576.CrossRefGoogle Scholar
Poinar, G. O. & Leutenegger, R. (1971). Ultrastructural investigations of the melanization process in Culex pipiens (Culicidae) in response to a nematode. Journal of Ultrastructural Research 36, 149–58.CrossRefGoogle ScholarPubMed
Prowse, R. H. & Tait, N. N. (1969). In vitro phagocytosis by amoebocytes from the haemolymph of Helix aspersa (Müller). 1. Evidence for opsonic factor(s) in the serum. Immunology 17, 437–43.Google Scholar
Ratcliffe, N. A. & Gagen, S. J. (1976). Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae. Journal of Invertebrate Pathology 28, 373–82.CrossRefGoogle Scholar
Reinisch, C. L. & Bang, F. B. (1971). Cell recognition: reaction of the sea-star Asterias vulgaris to the injection of amoebocytes of sea urchin Arbacia punctata. Cellular Immunology 2, 496–51.CrossRefGoogle Scholar
Renwrantz, L. & Berliner, U. (1978). A galactose-specific agglutinin, a blood-group H active polysaccharide and a trypsin inhibitor in albumen glands and eggs of Arianta arbustorum (Helicidae). Journal of Invertebrate Pathology 31, 171–9.CrossRefGoogle Scholar
Renwrantz, L. R. & Cheng, T. C. (1977 a). Identification of agglutinin receptors on hemocytes of Helix pomatia. Journal of Invertebrate Pathology 29, 8896.CrossRefGoogle ScholarPubMed
Renwrantz, L. R. & Cheng, T. C. (1977 b). Agglutinin-mediated attachment of erythrocytes to hemocytes of Helix pomatia. Journal of Invertebrate Pathology 29, 97100.CrossRefGoogle ScholarPubMed
Renwrantz, L. & Mohr, W. (1978). Opsonizing effect of serum and albumin gland extracts on the elimination of human erythrocytes from the circulation of Helix pomatia. Journal of Invertebrate Pathology 31, 164–70.CrossRefGoogle ScholarPubMed
Rowley, A. F. & Ratcliffe, N. A. (1979). An ultrastructural and cytochemical study of the interaction between latex particles and the haemocytes of the wax moth Galleria mellonella in vitro. Cell and Tissue Research 199, 127–37.CrossRefGoogle ScholarPubMed
Salt, G. (1970). Cellular Defence Reactions of Insects. Cambridge University Press.CrossRefGoogle Scholar
Schmit, A. R. & Ratcliffe, N. A. (1978). The encapsulation of Araldite implants and the recognition of foreignness in Clitumnus extradentatus. Journal of Insect Physiology 24, 511–22.CrossRefGoogle Scholar
Scott, M. T. (1971 a). Recognition of foreignness in invertebrates. II. In vitro studies of cockroach phagocytic haemocytes. Immunology 21, 817–28.Google Scholar
Scott, M.T.(1971 b).A naturally-occurring haemagglutinin in the haemolymph of the American cockroach. Archives de zoologie experimentale et generate 112, 7380.Google Scholar
Sharon, N. & Lis, H. (1972). Lectins: cell-agglutinating and sugar-specific proteins. Science 177, 949–59.CrossRefGoogle ScholarPubMed
Sminia, T. (1972). Structure and function of blood and connective-tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Zeitschrift für Zellforschung 130, 497526.CrossRefGoogle ScholarPubMed
Sminia, T., Borghardt-Reinders, E. & van de Linde, A. W. (1974). Encapsulation of foreign materials experimentally introduced into the freshwater snail Lymnaea stagnalis: an electron microscopic and autoradiographic study. Cell and Tissue Research 153, 307–26.CrossRefGoogle ScholarPubMed
Smith, M. J. (1970). The blood cells and tunic of the ascidian Holocynthia aurantium. I. Hematology, tunic morphology, and partition of cells between blood and tunic. Biological Bulletin, Woods Hole 138, 354–78.CrossRefGoogle Scholar
Smith, V. J. & Ratcliffe, N. A. (1978). Host defence reactions of the shore crab, Carcinua maenas (L.) in vitro. Journal of the Marine Biological Association, UK 58, 367–79.CrossRefGoogle Scholar
Solangi, M. A. & Lightner, D. V. (1976). Cellular inflammatory response of Penaeus aztecus and P. setiferus to the pathogenic fungus, Fusarum sp; isolated from the California brown shrimp P. californiensis. Journal of Invertebrate Pathology 27, 7786.CrossRefGoogle Scholar
Stanislawski, E., Renwrantz, L. & Becker, W. (1976). Soluble blood group reactive substances in the hemolymph of Biomphalaria globrata (Mollusca). Journal of Invertebrate Pathology 28, 301–8.CrossRefGoogle Scholar
Stein, P. C. & Basch, P. F. (1979). Purification and binding properties of hemagglutinin from Biomphalaria globrata. Journal of Invertebrate Pathology 33, 1018.CrossRefGoogle Scholar
Tanaka, K. (1975). Allogeneic distinction in Botryllus primigenus and in other colonial ascidians. In Immunologic Phytogeny (ed. Hildemann, W. H. and Benedict, A. A.). Advances in Experimental Medicine and Biology, vol. 64. New York and London: Plenum Press.Google Scholar
Theodor, J. L. (1970). Distinction between, ‘self’ and ‘not-self’ in lower invertebrates. Nature, London 227, 690–2.CrossRefGoogle ScholarPubMed
Tripp, M. R. (1983). Cellular responses of mollusks. Annals of the New York Academy of Sciences 113, 467–74.CrossRefGoogle Scholar
Tripp, M. R. (1974). Molluscan immunity. Annals of the New York Academy of Sciences 234, 23–7.CrossRefGoogle ScholarPubMed
Tyson, C. J., McKay, D. & Jenkin, C. R. (1974). Recognition of foreign-ness in the freshwater crayfish, Parachaeraps bicarinatus. In. Contemporary Topics in Immunobiology, vol. 4, (ed. Cooper, E. L.). Plenum Press.Google Scholar
Valembois, P. (1963). Recherches sur la nature de la reaction antigreffe chez le lombricien Eisenia foetida Savigny. Comptes rendus hebdomadaires des seances de l' Academie des Sciences, Paris 257, 3489–90.Google Scholar
Van Oss, C. J. & Gillman, C. F. (1972). Phagocytosis as a surface phenomenon. I. Journal of the Reticuloendothelial Society 12, 283–92.Google Scholar
Vinson, S. B. (1974). The role of the foreign surface and female parasitoid secretions on the immune response of an insect. Parasitology 68, 2733.CrossRefGoogle Scholar
Wakelin, D. (1978). Genetic control of susceptibility and resistance to parasitic infection. Advances in Parasitology, vol. 16 (ed. Lumsden, W. H. R., Muller, R. and Baker, J. R.). New York and London: Academic Press.Google Scholar
Wardlaw, A. C. & Unkles, S. E. (1978). Bactericidal activity of coelomic fluid from the sea urchin Echinus esculentus. Journal of Invertebrate Pathology 32, 126–34.CrossRefGoogle Scholar
Yoeli, M. (1973). Plasmodium berghei: mechanisms and sites of resistance to sporogonic development in different mosquitoes. Experimental Parasitology 34, 448–58.CrossRefGoogle ScholarPubMed
Yoshino, T. P. & Cheng, T. L. (1978). Snail host-like antigens associated with the surface membranes of Schistosoma mansoni miracidia. Journal of Parasitology 64, 752–3.CrossRefGoogle ScholarPubMed
Yoshino, T. P., Cheng, T. C. & Renwrantz, L. R. (1977). Lectin and human blood group determinants of Schistosoma mansoni-alteration following in vitro transformation of miracidium to mother sporocyst. Journal of Parasitology 63, 818–24.CrossRefGoogle ScholarPubMed