Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T18:56:07.903Z Has data issue: false hasContentIssue false

Intestinal distribution and fecundity of two species of Diplostomum parasites in definitive hosts

Published online by Cambridge University Press:  01 December 2005

A. KARVONEN
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
G.-H. CHENG
Affiliation:
Fisheries College, Zhanjiang Ocean University, Guangdong, 524025, China
O. SEPPÄLÄ
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
E. T. VALTONEN
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland

Abstract

This paper investigated the intestinal distribution and fecundity of 2 species of Diplostomum parasites, D. spathaceum and D. pseudospathaceum, in 2 species of definitive hosts, herring gull (Larus argentatus) and common gull (L. canus), using both empirical field data and experimental infections. At the level of individual hosts, the parasite species occupied different parts within the intestine, but the fecundity of the worms, measured as the number of eggs in the uterus, did not differ between the parasite species except in wild common gulls. Interestingly, egg numbers in individual hosts were positively correlated between the parasite species suggesting that some birds provided better resources for the parasite species. At the host population level, fecundity of the worms did not differ between the host species or between adult birds and chicks. Both parasite species were also aggregated to the same host individuals and it is likely that aggregation is transferred to gulls from fish intermediate hosts. Individual differences in suitability and parasite numbers between hosts provide important grounds and implications for epidemiological model-based parasite prevention strategies.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagge, A. M., Sasal, P., Valtonen, E. T. and Karvonen, A. ( 2005). Infracommunity level aggregation in the monogenean communities of crucian carp (Carassius carassius). Parasitology 131, 367372. DOI: 10.1017/S0031182005007626.CrossRefGoogle Scholar
Brooker, S., Whawell, S., Kabatereine, N. B., Fenwick, A. and Anderson, R. M. ( 2004). Evaluating the epidemiological impact of national control programmes for helminths. Trends in Parasitology 20, 537545.CrossRefGoogle Scholar
Brown, S. P., Renaud, F., Guégan, J.-F. and Thomas, F. ( 2001). Evolution of trophic transmission in parasites: need to reach a mating place? Journal of Evolutionary Biology 14, 815820.Google Scholar
Burrough, R. J. ( 1978). The population biology of two species of eyefluke, Diplostomum spathaceum and Tylodelphys clavata, in roach and rudd. Journal of Fish Biology 13, 1932.CrossRefGoogle Scholar
Bush, A. O. and Holmes, J. C. ( 1986). Intestinal helminths of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142152.CrossRefGoogle Scholar
Chappell, L. H., Hardie, L. J. and Secombes, C. J. ( 1994). Diplostomiasis: the disease and host-parasite interactions. In Parasitic Diseases of Fish ( ed. Pike, A. W. and Lewis, J. W.), pp. 5986. Samara Publishing Limited, Dyfed.
Choisy, M., Brown, S. P., Lafferty, K. D. and Thomas, F. ( 2003). Evolution of trophic transmission in parasites: why add intermediate hosts? American Naturalist 162, 172181.Google Scholar
Field, J. S. and Irwin, S. W. B. ( 1994). The epidemiology, treatment and control of diplostomiasis on a fish farm in Northern Ireland. In Parasitic Diseases of Fish ( ed. Pike, A. W. and Lewis, J. W.), pp. 87100. Samara Publishing Limited, Dyfed.
Field, J. S., McKeown, C. A. and Irwin, S. W. B. ( 1994). A proposed standard method for the maintenance of Diplostomum spp. (Digenea: Diplostomatidae) in the laboratory. Parasitology Research 80, 253254.Google Scholar
Galvani, A. P. ( 2005). Age-dependent epidemiological patterns and strain diversity in helminth parasites. Journal of Parasitology 91, 2430.CrossRefGoogle Scholar
Goater, C. P., Goss-Custard, J. D. and Kennedy, C. R. ( 1995). Population dynamics of two species of intestinal helminth in oystercatchers (Haematopus ostralegus). Canadian Journal of Zoology 73, 296300.CrossRefGoogle Scholar
Hudson, P. J., Rizzolli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P. ( 2002). The Ecology of Wildlife Diseases. Oxford University Press, Oxford.
Karvonen, A., Kirsi, S., Hudson, P. J. and Valtonen, E. T. ( 2004 a). Patterns of cercarial production from Diplostomum spathaceum: terminal investment of bet hedging? Parasitology 129, 8792. DOI: 10.1017/S0031182004005281.CrossRefGoogle Scholar
Karvonen, A., Seppälä, O. and Valtonen, E. T. ( 2004 b). Eye fluke-induced cataract formation in fish: quantitative analysis using an opthalmological microscope. Parasitology 129, 473478. DOI: 10.1017/S0031182004006006.CrossRefGoogle Scholar
Karvonen, A., Hudson, P. J., Seppälä, O. and Valtonen, E. T. ( 2004 c). Transmission dynamics of a trematode parasite: exposure, acquired resistance and parasite aggregation. Parasitology Research 92, 183188. DOI: 10.1007/s00436-003-1035-y.CrossRefGoogle Scholar
Loker, E. S. ( 1983). A comparative study of the life-histories of mammalian schistosomes. Parasitology 87, 343369.CrossRefGoogle Scholar
Morand, S., Simková, A., Matejusová, I., Plaisance, L., Verneau, O. and Desdevises, Y. ( 2002). Investigating patterns may reveal processes: evolutionary ecology of ectoparasitic monogeneans. International Journal for Parasitology 32, 111119.CrossRefGoogle Scholar
Niewiadomska, K. ( 1984). Present status of Diplostomum spathaceum (Rudolphi, 1819) and differentiation of Diplostomum pseudospathaceum nom. nov. (Trematoda: Diplostomatidae). Systematic Parasitology 6, 8186.Google Scholar
Niewiadomska, K. ( 1986). Verification of the life-cycles of Diplostomum spathaceum (Rudolphi, 1819) and D. pseudospathaceum Niewiadomska, 1984 (Trematoda: Diplostomatidae). Systematic Parasitology 8, 2331.Google Scholar
Parker, G. A., Chubb, J. C., Ball, M. A. and Roberts, G. N. ( 2003). Evolution of complex life cycles in helminth parasites. Nature, London 425, 480484.CrossRefGoogle Scholar
Pemberton, R. T. ( 1963). Helminth parasites of three species of British gulls, Larus argentatus Pont., L. fuscus L. and L. ridibundus L. Journal of Helminthology 37, 5788.Google Scholar
Pennycuick, L. ( 1971). Differences in the parasite infections in three-spined sticklebacks (Gasterosteus aculeatus L.) of different sex, age and size. Parasitology 63, 407418.Google Scholar
Poulin, R. ( 1997). Egg production in adult trematodes: adaptation or constraint? Parasitology 114, 195204.Google Scholar
Poulin, R. ( 2001). Interactions between species and the structure of helminth communities. Parasitology 122 (Suppl.), S3S11.CrossRefGoogle Scholar
Rohde, K. ( 1977). A non-competitive mechanism responsible for restricting niches. Zoologischer Anzeiger 199, 164172.Google Scholar
Rohde, K. ( 1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648671.CrossRefGoogle Scholar
Schleppe, J. L. and Goater, C. P. ( 2004). Comparative life histories of two diplostomid trematodes, Ornithodiplostomum ptychocheilus and Posthodiplostomum minimum. Journal of Parasitology 90, 13871390.CrossRefGoogle Scholar
Seppälä, O., Karvonen, A. and Valtonen ( 2005). Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Animal Behaviour 70, 889894.CrossRefGoogle Scholar
Shariff, M., Richards, R. H. and Sommerville, C. ( 1980). The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. Journal of Fish Diseases 3, 455465.CrossRefGoogle Scholar
Shaw, D. J. and Dobson, A. P. ( 1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111 (Suppl.) S111S133.CrossRefGoogle Scholar
Simková, A., Sitko, J., Okulewicz, J. and Morand, S. ( 2003). Occurrence of intermediate hosts and structure of digenean communities of the black-headed gull, Larus ridibundus (L.). Parasitology 126, 6978. DOI: 10.1017/S0031182002002615.CrossRefGoogle Scholar
Stables, J. N. and Chappell, L. H. ( 1986). The epidemiology of diplostomiasis in farmed rainbow trout from north-east Scotland. Parasitology 92, 699710.CrossRefGoogle Scholar
Sweeting, R. A. ( 1974). Investigations into natural and experimental infections of freshwater fish by the common eye-fluke Diplostomum spathaceum Rud. Parasitology 69, 291300.CrossRefGoogle Scholar