Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T13:59:14.067Z Has data issue: false hasContentIssue false

Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery

Published online by Cambridge University Press:  29 March 2006

A. MOUSLEY
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
A. G. MAULE
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
D. W. HALTON
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
N. J. MARKS
Affiliation:
Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK

Abstract

Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABDEL-LATIEF, M., MEYERING-VOS, M. & HOFFMANN, K. H. ( 2004). Type-A allatostatins from the fall armyworm, Spodoptera frugiperda: molecular cloning, expression and tissue-specific localization. Archives of Insect Biochemistry and Physiology 56, 120132.CrossRefGoogle Scholar
AGUILAR, R., MAESTRO, J. L., VILAPLANA, L., CHIVA, C., ANDREU, D. & BELLÉS, X. ( 2004). Identification of leucomyosuppressin in the German cockroach, Blattella germanica, as an inhibitor of food intake. Regulatory Peptides 119, 105112.CrossRefGoogle Scholar
AGUINALDO, A. M. A., TURBEVILLE, J. M., LINFORD, L. S., RIVERA, M. C., GAREY, J. R., RAFF, R. A. & LAKE, J. A. ( 1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489492.CrossRefGoogle Scholar
ALTSTEIN, M. ( 2001). Insect neuropeptide antagonists. Biopolymers 60, 460473.3.0.CO;2-Y>CrossRefGoogle Scholar
ALTSTEIN, M. ( 2004). Novel insect control agents based on neuropeptide antagonists: The PK/PBAN family as a case study. Journal of Molecular Neuroscience 22, 147157.CrossRefGoogle Scholar
ALTSTEIN, M., BEN-AZIZ, O., DANIEL, S., SCHEFLER, I., ZELSTER, I. & GILON, C. ( 1999). Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. Journal of Biological Chemistry 274, 1757317579.CrossRefGoogle Scholar
AUDSLEY, N. & WEAVER, R. J. ( 2003). Identification of neuropeptides of larval Manduca sexta and Lacanobia oleracea using MALDI-TOF mass spectrometry and post-source decay. Peptides 24, 14651474.CrossRefGoogle Scholar
AUERSWALD, L., BIRGÜL, N., GADE, G., KREIENKAMP, H. J. & RICHTER, D. ( 2001). Structural, functional, and evolutionary characterization of novel members of the allatostatin receptor family from insects. Biochemical and Biophysical Research Communications 282, 904909.CrossRefGoogle Scholar
BAGGERMAN, G., BOONEN, K., VERLEYEN, P., DE LOOF, A. & SCHOOFS, L. ( 2005). Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Mass Spectrometry 40, 250260.CrossRefGoogle Scholar
BAGGERMAN, G., CERSTIAENS, A., DE LOOF, A. & SCHOOFS, L. ( 2002). Peptidomics of the larval Drosophila melanogaster central nervous system. Journal of Biological Chemistry 277, 4036840374.CrossRefGoogle Scholar
BAGGERMAN, G., CLYNEN, E., HUYBRECHTS, J., VERLEYEN, P., CLERENS, S., DE LOOF, A. & SCHOOFS, L. ( 2003). Peptide profiling of a single Locusta migratoria corpus cardiacum by nano-LC tandem mass spectrometry. Peptides 24, 14751485.CrossRefGoogle Scholar
BARGMANN, C. I. ( 1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 20282033.CrossRefGoogle Scholar
BELLÉS, X., GRAHAM, L. A., BENDENA, W. G., DING, Q. I., EDWARDS, J. P., WEAVER, R. J. & TOBE, S. S. ( 1999). The molecular evolution of the allatostatin precursor in cockroaches. Peptides 20, 1122.CrossRefGoogle Scholar
BELLÉS, X., MAESTRO, J. L., PIULACHS, M. D., JOHNSEN, A. H., DUVE, H. & THORPE, A. ( 1994). Allatostatic neuropeptides from the cockroach Blatella germanica (L.) (Dictyoptera, Blatellidae). Identification, immunolocalization and activity. Regulatory Peptides 53, 237247.Google Scholar
BENDENA, W. G., DONLY, B. C. & TOBE, S. S. ( 1999). Allatostatins: a growing family of neuropeptides with structural and functional diversity. Annals of the New York Academy of Sciences 897, 311329.CrossRefGoogle Scholar
BIRGÜL, N., WEISE, C., KREIENKAMP, H. J. & RICHTER, D. ( 1999). Reverse physiology in Drosophila: Identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. European Molecular Biology Organization Journal 18, 58925900.CrossRefGoogle Scholar
BOWMAN, J. W., FRIEDMAN, A. R., THOMPSON, D. P., MAULE, A. G., ALEXANDER-BOWMAN, S. J. & GEARY, T. G. ( 2002). Structure-activity relationships of an inhibitory nematode FMRFamide-related peptide, SDPNFLRFamide (PF1), on Ascaris suum muscle. International Journal for Parasitology 32, 17651771.CrossRefGoogle Scholar
BOWMAN, J. W., WINTERROWD, C. A., FRIEDMAN, A. R., THOMPSON, D. P., KLEIN, R. D., DAVIS, J. P., MAULE, A. G., BLAIR, K. L. & GEARY, T. G. ( 1995). Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related peptide in Ascaris suum. Journal of Neurophysiology 74, 18801888.CrossRefGoogle Scholar
BOWSER, P. R. & TOBE, S. S. ( 2000). Partial characterization of a putative allatostatin receptor in the midgut of the cockroach Diploptera punctata. General and Comparative Endocrinology 119, 110.CrossRefGoogle Scholar
BRODY, T. & CRAVCHIK, A. ( 2000). Drosophila melanogaster G-protein-coupled receptors. Journal of Cell Biology 150, F83F88.CrossRefGoogle Scholar
BROWN, B. E. & STARRAT, A. N. ( 1975). Isolation of proctolin, a myotropic peptide from Periplaneta americana. Journal of Insect Physiology 21, 18791881.CrossRefGoogle Scholar
BROWNLEE, D. J. A., FAIRWEATHER, I. & JOHNSTON, C. F. ( 1994). Immunocytochemical distribution of peptidergic and serotoninergic components in the enteric nervous system of the roundworm, Ascaris suum (Nematoda, Ascaroidea). Parasitology 108, 89103.CrossRefGoogle Scholar
BROWNLEE, D. J. A., HOLDEN-DYE, L., FAIRWEATHER, I. & WALKER, R. J. ( 1995). The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitology 111, 379384.CrossRefGoogle Scholar
BROWNLEE, D. J. A. & WALKER, R. J. ( 1999). Actions of nematode FMRFamide-related peptides on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Annals of the New York Academy of Sciences 897, 228238.CrossRefGoogle Scholar
CAZZAMALI, G. & GRIMMELIKHUIJZEN, C. J. ( 2002). Molecular cloning and functional expression of the first insect FMRFamide receptor. Proceedings of the National Academy of Sciences, USA 99, 1207312078.CrossRefGoogle Scholar
CERSTIAENS, A., BENFEKIH, L., ZOUITEN, H., VERHAERT, P., DE LOOF, A. & SCHOOFS, L. ( 1999). Led-NPF-1 stimulates ovarian development in locusts. Peptides 20, 3944.CrossRefGoogle Scholar
CLARK, J. & LANGE, A. B. ( 2002). Evidence for the association of FMRFamide-related peptides with the spermatheca of Locusta migratoria. Peptides 23, 613619.CrossRefGoogle Scholar
CLYNEN, E., BAGGERMAN, G., VEELAERT, D., CERSTIAENS, A., VAN der horst, D., HARTHOORN, L., DERUA, R., WAELKENS, E., DE LOOF, A. & SCHOOFS, L. ( 2001). Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. European Journal of Biochemistry 268, 19291939.CrossRefGoogle Scholar
COAST, G. M. ( 1998). The influence of neuropeptides on Malpighian tubule writhing and its significance for excretion. Peptides 19, 469480.CrossRefGoogle Scholar
COOK, B. J., WAGNER, R. M. & PRYOR, N. W. ( 1993). Effects of leucomyosuppressin on the excitation-concentration coupling of insect Leucophaea maderae visceral muscle. Comparative Biochemistry and Physiology 106, 671678.CrossRefGoogle Scholar
COWDEN, C., SITHIGORNGUL, P., BRACKLEY, P., GUASTELLA, J. & STRETTON, A. O. W. ( 1993). Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum. Journal of Comparative Neurology 333, 455468.CrossRefGoogle Scholar
COWDEN, C. & STRETTON, A. O. W. ( 1993). AF2, an Ascaris neuropeptide: Isolation, sequence, and bioactivity. Peptides 14, 423430.CrossRefGoogle Scholar
COWDEN, C. & STRETTON, A. O. W. ( 1995). Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 16, 491500.CrossRefGoogle Scholar
COWDEN, C., STRETTON, A. O. W. & DAVIS, R. E. ( 1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 14651473.CrossRefGoogle Scholar
CUSSON, M., PRESTWICH, G. D., STAY, B. & TOBE, S. S. ( 1991). Photoaffinity labelling of allatostatin receptor proteins in the corpora allata of the cockroach, Diploptera punctata. Biochemical and Biophysical Research Communications 181, 736742.CrossRefGoogle Scholar
CUTHBERT, B. A. & EVANS, P. D. ( 1989). A comparison of the effects of FMRFamide-like peptides on locust heart and skeletal muscle. Journal of Experimental Biology 144, 395415.Google Scholar
DAVEY, M., DUVE, H., THORPE, A. & EAST, P. ( 1999). Characterisation of the helicostatin peptide precursor gene from Helicoverpa armigera (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology 29, 11191127.CrossRefGoogle Scholar
DAVIS, R. E. & STRETTON, A. O. W. ( 1996). The motornervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology 114, S97S117.CrossRefGoogle Scholar
DAVIS, R. E. & STRETTON, A. O. W. ( 2001). Structure-activity relationships of 18 endogenous neuropeptides on the motornervous system of the nematode Ascaris suum. Peptides 22, 723.CrossRefGoogle Scholar
DAVIS, N. T., VEENSTRA, J. A., FEYEREISEN, R. & HILDEBRAND, J. G. ( 1997). Allatostatin-like-immunoreactive neurons in the tobacco hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins. Journal of Comparative Neurology 385, 265284.3.0.CO;2-#>CrossRefGoogle Scholar
DAY, T. G. & MAULE, A. G. ( 1999). Parasitic Peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20, 9991019.CrossRefGoogle Scholar
DAY, T. A., MAULE, A. G., SHAW, C., HALTON, D. W., MOORE, S., BENNETT, J. L. & PAX, R. A. ( 1994). Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology 109, 455459.CrossRefGoogle Scholar
DE BONO, M. & BARGMANN, C. I. ( 1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679689.CrossRefGoogle Scholar
DING, Q., DONLY, B. C., TOBE, S. S. & BENDENA, W. G. ( 1995). Comparison of the allatostatin neuropeptide precursors in the distantly related cockroaches Periplaneta americana and Diploptera punctata. Journal of Biochemistry 234, 737746.CrossRefGoogle Scholar
DIRCKSEN, H., SKIEBE, P., ABEL, B., AGRICOLA, H., BUCHNER, K., MUREN, J. E. & Nässel, D. R. ( 1999). Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20, 695712.CrossRefGoogle Scholar
DONLY, B. C., DING, Q., TOBE, S. S. & BENDENA, W. G. ( 1993). Molecular cloning of the gene for the allatostatin family of neuropeptides from the cockroach Diploptera punctata. Proceedings of the National Academy of Sciences, USA 90, 88078811.CrossRefGoogle Scholar
DUTTLINGER, A., MISPELON, M. & NICHOLS, R. ( 2003). The structure of the FMRFamide receptor and activity of the cardioexcitatory neuropeptide are conserved in mosquito. Neuropeptides 37, 120126.CrossRefGoogle Scholar
DUVE, H., AUDSLEY, A., WEAVER, R. J. & THORPE, A. ( 2000). Triple co-localisation of two types of allatostatin and an allatotropin in the frontal ganglion of the lepidopteran Lacanobia oleracea (Noctuidae): innervation and action on the foregut. Cell and Tissue Research 300, 153163.CrossRefGoogle Scholar
DUVE, H., EAST, P. & THORPE, A. ( 1999). Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion. Journal of Comparative Neurology 413, 405416.3.0.CO;2-R>CrossRefGoogle Scholar
DUVE, H., ELIA, A. J., ORCHARD, I., JOHNSEN, A. H. & THORPE, A. ( 1993 a). The effects of CalliFMRFamides and other FMRFamide-related neuropeptides on the activity of the heart of the blowfly Calliphora vomitoria. Journal of Insect Physiology 39, 3140.Google Scholar
DUVE, H., JOHNSEN, A. H., MAESTRO, J.-L., SCOTT, A. G., CROOK, N., WINSTANLEY, D. & THORPE, A. ( 1997 a). Identification, tissue localisation and physiological effect in vitro of a neuroendocrine peptide identical to a dipteran Leu-callatostatin in the codling moth Cydia pomonella (Tortricidae: Lepidoptera). Cell and Tissue Research 289, 7383.Google Scholar
DUVE, H., JOHNSEN, A. H., MAESTRO, J.-L., SCOTT, A. G., EAST, P. D. & THORPE, A. ( 1996). Identification of the dipteran Leu-callatostatin peptide family: the pattern of precursor processing revealed by isolation studies in Calliphora vomitoria. Regulatory Peptides 67, 1119.CrossRefGoogle Scholar
DUVE, H., JOHNSEN, A. H., MAESTRO, J.-L., SCOTT, A. G., JAROS, P. P. & THORPE, A. ( 1997 b). Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. European Journal of Biochemistry 250, 727734.Google Scholar
DUVE, H., JOHNSEN, A. H., MAESTRO, J.-L., SCOTT, A. G., WINSTANLEY, D., DAVEY, M., EAST, P. D. & THORPE, A. ( 1997 c). Lepidopteran peptides of the Allatostatin superfamily. Peptides 18, 13011309.Google Scholar
DUVE, H., JOHNSEN, A. H., SCOTT, A. G., EAST, P. & THORPE, A. ( 1994). [Hyp3]Met-callatostatin: identification and biological properties of a novel neuropeptide from the blowfly Calliphora vomitoria. Journal of Biological Chemistry 269, 2105921066.Google Scholar
DUVE, H., JOHNSEN, A. H., SCOTT, A. G. & THORPE, A. ( 1995 a). Isolation, identification and functional significance of [Hyp2]Met-callatostatin and des Gly-Pro Met-callatostatin, two further post-translational modifications of the blowfly neuropeptide Met-callatostatin. Regulatory Peptides 57, 237245.Google Scholar
DUVE, H., JOHNSEN, A. H., SCOTT, A. G. & THORPE, A. ( 2002). Allatostatins of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). Peptides 23, 10391051.CrossRefGoogle Scholar
DUVE, H., JOHNSEN, A. H., SCOTT, A. G., YU, C. G., YAGI, K. J., TOBE, S. S. & THORPE, A. ( 1993 b). Callatostatins: Neuropeptides from the blowfly Calliphora vomitoria with sequence homology to cockroach allatostatins. Proceedings of the National Academy of Sciences, USA 90, 24562460.Google Scholar
DUVE, H., JOHNSEN, A. H., SEWELL, J. C., SCOTT, A. G., ORCHARD, I., REHFELD, J. F. & THORPE, A. ( 1992). Isolation, structure, and activity of Phe-Met-Arg-Phe-NH2 neuropeptides (designated calliFMRFamides) from the blowfly Calliphora vomitoria. Proceedings of the National Academy of Sciences, USA 89, 23262330.CrossRefGoogle Scholar
DUVE, H., THORPE, A., SCOTT, A. G., JOHNSEN, A., REHFELD, J. F., HINES, E. & EAST, P. D. ( 1995 b). The sulfakinins of the blowfly Calliphora vomitoria. Peptide isolation, gene cloning and expression studies. European Journal of Biochemistry 232, 633640.Google Scholar
EAST, P., TREGENZA, K., DUVE, H. & THORPE, A. ( 1996). Identification of the dipteran Leu-callatostatin peptide family: characterization of the prohormone gene from Calliphora vomitoria and Lucilia cuprina. Regulatory Peptides 67, 19.CrossRefGoogle Scholar
EDISON, A. S., MESSINGER, L. A. & STRETTON, A. O. W. ( 1997). afp-1: a gene encoding multiple transcripts of a new class of FMRFamide-like neuropeptides in the nematode Ascaris suum. Peptides 18, 929935.CrossRefGoogle Scholar
EGEROD, K., REYNISSON, E., HAUSER, F., CAZZAMALI, G., WILLIAMSON, M. & GRIMMELIKHUIJZEN, C. J. P. ( 2003). Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proceedings of the National Academy of Sciences, USA 100, 98089813.CrossRefGoogle Scholar
ELIA, A. J. & ORCHARD, I. ( 1995). Peptidergic innervation of leg muscles of the cockroach, Periplaneta americana (L.) and a possible role in modulation of muscle contraction. Journal of Comparative Physiology 176, 425435.Google Scholar
FACCIPONTE, G., MIKSYS, S. & LANGE, A. B. ( 1995). The innervation of a ventral abdominal protractor muscle in Locusta. Journal of Comparative Physiology 177, 645657.CrossRefGoogle Scholar
FELLOWES, R. A., MAULE, A. G., MARKS, N. J., GEARY, T. G., THOMPSON, D. P. & HALTON, D. W. ( 2000). Nematode neuropeptide modulation of the vagina vera of Ascaris suum: in vitro effects of PF1, PF2, PF4, AF3 and AF4. Parasitology 120, 7989.CrossRefGoogle Scholar
FELLOWES, R. A., MAULE, A. G., MARKS, N. J., GEARY, T. G., THOMPSON, D. P., SHAW, C. & HALTON, D. W. ( 1998). Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides. Parasitology 116, 277287.CrossRefGoogle Scholar
FONAGHY, A., SCHOOFS, L., PROOST, P., VAN DAMME, J., BUEDS, H. & DE loof, A. ( 1992 a). Isolation, primary structure and synthesis of neomyosuppressin, a myoinhibiting neuropeptide from the grey fleshfly, Neobellieria bullata. Comparative Biochemistry and Physiology 102, 239245.Google Scholar
FONAGHY, A., SCHOOFS, L., PROOST, P., VAN DAMME, J. & DE LOOF, A. ( 1992 b). Isolation and primary structure of two sulfakinin-like peptides from the fleshfly, Neobellieria bullata. Comparative Biochemistry and Physiology 103, 135142.Google Scholar
FRANKS, C. J., HOLDEN-DYE, L., WILLIAMS, R. G., PANG, F. Y. & WALKER, R. J. ( 1994). A nematode FMRFamide-like peptide, SDPNFLRFamide, relaxes the dorsal muscle strip preparation of Ascaris suum. Parasitology 108, 229236.CrossRefGoogle Scholar
FRANKS, C. J., WALKER, R. J. & HOLDEN-DYE, L. ( 2004). A structure-activity study of the neuropeptide PF1, SDPNFLRFamide, using the dorsal body wall muscle of the chicken nematode, Ascaridia galli. Acta Biologica Hungarica 55, 343351.CrossRefGoogle Scholar
FUJISAWA, Y., SHIMODA, M., KIGUCHI, K., ICHIKAWA, T. & FUJITA, N. ( 1993). The inhibitory effect of a neuropeptide, ManducaFLRFamide, on the midgut activity of the Sphingid moth Agrius convolvuli. Zoological Science 10, 773777.Google Scholar
FUSE, M. & ORCHARD, I. ( 1998). The muscular contractions of the midgut of the cockroach, Diploptera punctata: effects of the insect neuropeptides proctolin and leucomyosupressin. Regulatory Peptides 77, 163168.CrossRefGoogle Scholar
FUSE, M., ZHANG, J. R., PARTRIDGE, E., NACHMAN, R. J., ORCHARD, I., BENDENA, W. G. & TOBE, S. S. ( 1999). Effects of an allatostatin and a myosuppressin on midgut carbohydrate enzyme activity in the cockroach Diploptera punctata. Peptides 20, 12891293.CrossRefGoogle Scholar
GADE, G. & GOLDSWORTHY, G. J. ( 2003). Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Management Science 59, 10631075.CrossRefGoogle Scholar
GAUS, G., DOBLE, K. E., PRICE, D. A., GREENBERG, M. J., LEE, T. D. & BATTELLE, B. A. ( 1993). The sequences of 5 neuropeptides isolated from Limulus using antisera to FMRFamide. Biological Bulletin 184, 322329.CrossRefGoogle Scholar
GEARY, T. G., CONDER, G. A. & BISHOP, B. ( 2004). The changing landscape of antiparasitic drug discovery for veterinary medicine. Trends in Parasitology 20, 449455.CrossRefGoogle Scholar
GEARY, T. G. & KUBIAK, T. M. ( 2005). Neuropeptide G-protein-coupled receptors, their cognate ligands and behavior in Caenorhabditis elegans. Trends in Pharmacological Science 26, 5658.CrossRefGoogle Scholar
GEARY, T. G., MARKS, N. J., MAULE, A. G., BOWMAN, J. W., ALEXANDER-BOWMAN, S. J., DAY, T. A., LARSEN, M. J., KUBIAK, T. M., DAVIS, J. P. & THOMPSON, D. P. ( 1999). Pharmacology of FMRFamide-related peptides in helminths. Annals of the New York Academy of Sciences 897, 212227.CrossRefGoogle Scholar
GEARY, T. G., PRICE, D. A., BOWMAN, J. W., WINTERROWD, C. A., MACKENZIE, C. D., GARRISON, R. D., WILLIAMS, J. F. & FRIEDMAN, A. R. ( 1992). Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 13, 209214.CrossRefGoogle Scholar
GRAHAM, M. K., FAIRWEATHER, I. & MCGEOWN, J. G. ( 1997). The effects of FaRPs on the motility of isolated muscle strip preparations from the liver fluke, Fasciola hepatica. Parasitology 114, 455465.CrossRefGoogle Scholar
GRAHAM, M. K., FAIRWEATHER, I. & MCGEOWN, J. G. ( 2000). Second messengers mediating mechanical responses to the FaRP GYIRFamide in the fluke Fasciola hepatica. American Journal of Physiology Regulatory Integrative Comparative Physiology 279, R2089R2094.CrossRefGoogle Scholar
HALTON, D. W. ( 2004). Microscopy and the helminth parasite. Micron 35, 361390.CrossRefGoogle Scholar
HALTON, D. W. & MAULE, A. G. ( 2004). Flatworm nerve-muscle: structural and functional analysis. Canadian Journal of Zoology 82, 316333.CrossRefGoogle Scholar
HEWES, R. S. & TAGHERT, P. H. ( 2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research 11, 11261142.CrossRefGoogle Scholar
HOFFMANN, K. H., MEYERING-VOS, M. & LORENZ, M. W. ( 1999). Allatostatins and allatotropins: is regulation of corpora allata activity their primary function? European Journal of Entomology 96, 255266.Google Scholar
HOLDEN-DYE, L., BROWNLEE, D. J. A. & WALKER, R. J. ( 1997). The effects of the peptide KPNFIRFamide (PF4) on somatic muscle cells of the parasitic nematode Ascaris suum. British Journal of Pharmacology 120, 379386.CrossRefGoogle Scholar
HOLDEN-DYE, L., FRANKS, C. J., WILLIAMS, R. G., PANG, F. Y. & WALKER, R. J. ( 1995). The effects of the nematode peptides SDPNFLRFamide (PF1) and SADPNFLRFamide (PF2) on synaptic transmission in the parasitic nematode, Ascaris suum. Parasitology 110, 449455.CrossRefGoogle Scholar
HOLMAN, G. M., COOK, B. J. & NACHMAN, R. J. ( 1986). Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comparative Biochemistry and Physiology 85, 329333.CrossRefGoogle Scholar
HRČKOVA, G., VELENBNY, S., HALTON, D. W. & MAULE, A. G. ( 2002). Mesocestoides corti (syn. M. vogae): modulation of larval motility by neuropeptides, serotonin and acetylcholine. Parasitology 124, 409421.Google Scholar
HUMPHRIES, J. E., MOUSLEY, A., MAULE, A. G. & HALTON, D. W. ( 2000). Neuromusculature – Structure and Functional Correlates. In Echinostomes as Experimental Models for Biological Research ( ed. Fried, G. & Graczyk, T. K.), pp. 213227. Kluwer Academic Publishers, Netherlands.CrossRef
HUYBRECHTS, J., DE LOOF, A. & SCHOOFS, L. ( 2004). Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochemical and Biophysical Research Communications 317, 909916.CrossRefGoogle Scholar
JOHNSEN, A. H., DUVE, H., DAVEY, M., HALL, M. & THORPE, A. ( 2000). Sulfakinin neuropeptides in a crustacean – isolation, identification and tissue localisation in the tiger prawn Penaeus monodon. European Journal of Biochemistry 267, 11531160.CrossRefGoogle Scholar
JOHNSTON, R. N., SHAW, C., HALTON, D. W., VERHAERT, P. & BAGUNA, J. ( 1995). GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochemical and Biophysical Research Communications 209, 689697.CrossRefGoogle Scholar
JOHNSTON, R. N., SHAW, C., HALTON, D. W., VERHAERT, P., BLAIR, K. L., BRENNAN, G. P., PRICE, D. A. & ANDERSON, P. A. V. ( 1996). Isolation, localization, and bioactivity of the FMRFamide-related neuropeptides GYIRFamide and YIRFamide from the marine turbellarian Bdelloura candida. Journal of Neurochemistry 67, 814821.CrossRefGoogle Scholar
KAPLAN, R. M. ( 2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle Scholar
KEATING, C., THORNDYE, M. C., HOLDEN-DYE, L., WILLIAMS, R. G. & WALKER, R. J. ( 1995). The isolation of a FMRFamide-like peptide from the nematode Haemonchus contortus. Parasitology 111, 515521.CrossRefGoogle Scholar
KIM, K. & LI, C. ( 2004). Differential expression and regulation of flp neuropeptide genes in C. elegans. Journal of Comparative Neurology 475, 540550.CrossRefGoogle Scholar
KIMBER, M. J., FLEMING, C. C., BJOURSON, A., HALTON, D. W. & MAULE, A. G. ( 2001). FMRFamide-related peptides in potato cyst nematodes. Molecular and Biochemical Parasitology 116, 199208.CrossRefGoogle Scholar
KIMBER, M. J., FLEMING, C. C., PRIOR, A., JONES, J. T., HALTON, D. W. & MAULE, A. G. ( 2002). Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridization. International Journal for Parasitology 32, 10951105.CrossRefGoogle Scholar
KINGAN, T. G., SHABANOWITZ, J., HUNT, D. F. & WITTEN, J. L. ( 1996). Characterization of two myotropic neuropeptides in the FMRFamide family from segmental ganglia of the moth Manduca sexta: candidate neurohormones and neuromodulators. Journal of Experimental Biology 199, 10951104.Google Scholar
KINGAN, T. G., TEPLOW, D. B., PHILLIPS, J. M., RIEHM, J. P., RANGARAO, K., HILDEBRAND, J. G., HAMBERS, U., KAMMER, A. E., JARDINE, I., GRIFFIN, P. R. & HUNT, D. F. ( 1990). A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth, Manduca sexta. Peptides 11, 849856.CrossRefGoogle Scholar
KINGAN, T. G., ZITNAN, D., JAFFE, H. & BECKAGE, N. E. ( 1997). Identification of neuropeptides in the midgut of parasitized insects: FLRFamides as candidate paracrines. Molecular and Cellular Endocrinology 133, 1932.CrossRefGoogle Scholar
KRAJNIAK, K. G. ( 1991). The identification and structure activity relations of a cardioactive FMRFamide-related peptides from the blue crab Callinectes sapidus. Peptides 12, 12951302.CrossRefGoogle Scholar
KRAMER, S. J., TOSCHI, A., MILLER, C. A., KATOAKA, H., QUISTAD, G. B., LI, J. P., CARNEY, R. L. & SCHOOLEY, D. A. ( 1991). Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proceedings of the National Academy of Sciences, USA 88, 94589462.CrossRefGoogle Scholar
KUBIAK, T. M., LARSEN, M. J., BURTON, K. J., BANNOW, C. A., MARTIN, R. A., ZANTELLO, M. R. & LOWERY, D. E. ( 2002). Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Biochemical and Biophysical Research Communications 291, 313320.CrossRefGoogle Scholar
KUBIAK, T. M., LARSEN, M. J., DAVIS, J. P., ZANTELLO, M. R. & BOWMAN, J. W. ( 2003 a). AF2 interaction with Ascaris suum body wall muscle membranes involves G-protein activation. Biochemical and Biophysical Research Communications 301, 456459.Google Scholar
KUBIAK, T. M., LARSEN, M. J., NULF, S. C., ZANTELLO, M. R., BURTON, K. J., BOWMAN, J. W., MODRIK, T. & LOWERY, D. E. ( 2003 b). Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. Journal of Biological Chemistry 278, 3372433729.Google Scholar
KUBIAK, T. M., LARSEN, M. J., ZANTELLO, M. R., BOWMAN, J. W., NULF, S. C. & LOWERY, D. E. ( 2003 c). Functional annotation of the putative orphan Caenorhabditis elegans G-protein-coupled receptor C10C6.2 as a FLP15 peptide receptor. Journal of Biological Chemistry 278, 4211542120.Google Scholar
KUBIAK, T. M., MAULE, A. G., MARKS, N. J., MARTIN, R. A. & WEIST, J. R. ( 1996). The importance of the proline residue to the functional activity and metabolic stability of the nematode FMRFamide-related peptide, KPNFIRFamide (PF4). Peptides 17, 12671277.CrossRefGoogle Scholar
LANGE, A. B., BENDENA, W. G. & TOBE, S. S. ( 1995). The effect of the thirteen Dip-allatostatins on myogenic and induced contractions of the cockroach (Diploptera punctata) hindgut. Journal of Insect Physiology 41, 581588.CrossRefGoogle Scholar
LANGE, A. B. & CHEUNG, I. L. ( 1999). The modulation of skeletal muscle contraction by FMRFamide-related peptides of the locust. Peptides 20, 14111418.CrossRefGoogle Scholar
LANGE, A. B. & ORCHARD, I. ( 1998). The effects of SchistoFLRFamide on contractions of locust midgut. Peptides 19, 459467.CrossRefGoogle Scholar
LANGE, A. B., ORCHARD, I. & TE BRUGGER, V. A. ( 1991). Evidence for the involvement of a schistoFLRFamide-like peptide in the neural control of locust oviduct. Journal of Comparative Physiology 169, 383391.CrossRefGoogle Scholar
LANGE, A. B., ORCHARD, I., WANG, Z. & NACHMAN, R. J. ( 1995). A nonpeptide agonist of the invertebrate receptor for SchistoFLRFamide (PDVDHVFLRFamide), a member of a subfamily of insect FMRFamide-related peptides. Proceedings of the National Academy of Sciences, USA 92, 92509253.CrossRefGoogle Scholar
LANGE, A. B., PEEFF, N. M. & ORCHARD, I. ( 1994). Isolation, sequence and bioactivity of FMRFamide-related peptides from the locust ventral nerve cord. Peptides 15, 10891094.CrossRefGoogle Scholar
LARSEN, M. J., BURTON, K. J., ZANTELLO, M. R., SMITH, V. G., LOWERY, D. L. & KUBIAK, T. M. ( 2001). Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochemical and Biophysical Research Communications 286, 895901.CrossRefGoogle Scholar
LENZ, C., SONDERGAARD, L. & GRIMMELIKHUIJZEN, C. J. P. ( 2000). Molecular cloning and genomic organization of a novel receptor from Drosophila melanogaster structurally related to mammalian galanin receptors. Biochemical and Biophysical Research Communications 269, 9196.CrossRefGoogle Scholar
LENZ, C., WILLIAMSON, M. & GRIMMELIKHUIJZEN, C. J. P. ( 2000 a). Molecular cloning and genomic organisation of an allatostatin preprohormone in Drosophila melanogaster. Biochemical and Biophysical Research Communications 273, 11261131.Google Scholar
LENZ, C., WILLIAMSON, M. & GRIMMELIKHUIJZEN, C. J. P. ( 2000 b). Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster. Biochemical and Biophysical Research Communications 273, 571577.Google Scholar
LENZ, C., WILLIAMSON, M., HANSEN, G. N. & GRIMMELIKHUIJZEN, C. J. P. ( 2001). Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochemical and Biophysical Research Communications 286, 11171122.CrossRefGoogle Scholar
LI, C., KIM, K. & NELSON, L. S. ( 1999). FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Research 848, 2634.CrossRefGoogle Scholar
LI, C., NELSON, L. S., KIM, K., NATHOO, A. & HART, A. C. ( 1999). Neuropeptide gene families in the nematode Caenorhabditis elegans. Annals of the New York Academy of Sciences 897, 239252.CrossRefGoogle Scholar
LINTS, R., JIA, L., KIM, K., LI, C. & EMMONS, S. W. ( 2004). Axial patterning of C. elegans male sensilla identities by selector genes. Developmental Biology 269, 137151.Google Scholar
LONDERSHAUSEN, M. ( 1996). Approaches to New Parasiticides. Pesticide Science 48, 269292.3.0.CO;2-B>CrossRefGoogle Scholar
LORENZ, M. W., KELLNER, R. & HOFFMANN, K. H. ( 1995 a). A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. Journal of Biological Chemistry 270, 2110321108.Google Scholar
LORENZ, M. W., KELLNER, R. & HOFFMANN, K. H. ( 1995 b). Identification of two allatostatins from the cricket, Gryllus bimaculatus de Geer (Ensifera, Gryllidae): additional members of a family of neuropeptides inhibiting juvenile hormone biosynthesis. Regulatory Peptides 57, 227236.Google Scholar
LORENZ, M. W., KELLNER, R. & HOFFMANN, K. H. ( 1999). Allatostatins in Gryllus bimaculatus (Ensifera: Gryllidae): new structures and physiological properties. European Journal of Entomology 96, 267274.Google Scholar
LORENZ, M. W., KELLNER, R., HOFFMANN, K. H. & GADE, G. ( 2000). Identification of multiple peptides homologous to cockroach and cricket allatostatins in the stick insect Carausius morosus. Insect Biochemistry and Molecular Biology 30, 711718.CrossRefGoogle Scholar
LOWERY, D. E., GEARY, T. G., KUBIAK, T. M. & LARSEN, M. J. ( 2003). G protein-coupled receptors and modulators thereof. US Patent No. 6,632,621.Google Scholar
LUNQUIST, T. & NÄSSEL, D. R. ( 1990). Substance P, FMRFamide and gastrin/cholecystokinin-like neurons in the thoracico-abdominal ganglia of the flies Drosophila and Calliphora. Journal of Comparative Neurology 294, 161178.CrossRefGoogle Scholar
MARKS, N. J., JOHNSON, S., MAULE, A. G., HALTON, D. W., SHAW, C., GEARY, T. G., MOORE, S. & THOMPSON, D. P. ( 1996 a). Physiological effects of platyhelminth RFamide peptides on muscle-strip preparations of Fasciola hepatica (Trematoda: Digenea). Parasitology 113, 393401.Google Scholar
MARKS, N. J., MAULE, A. G., GEARY, T. G., THOMPSON, D. P., DAVIS, J. P., HALTON, D. W., VERHAERT, P. & SHAW, C. ( 1997 a). APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: structure and myoactivity. Biochemical and Biophysical Research Communications 231, 591595.Google Scholar
MARKS, N. J., MAULE, A. G., GEARY, T. G., THOMPSON, D. P., LI, C., HALTON, D. W. & SHAW, C. ( 1998). KSAYMRFamide (PF3/AF8) is present in the free-living nematode, Caenorhabditis elegans. Biochemical and Biophysical Research Communications 248, 422425.CrossRefGoogle Scholar
MARKS, N. J., MAULE, A. G., HALTON, D. W., GEARY, T. G., SHAW, C. & THOMPSON, D. P. ( 1997 b). Pharmacological effects of nematode FMRFamide-related peptides (FaRPs) on muscle contractility of the trematode, Fasciola hepatica. Parasitology 114, 531539.Google Scholar
MARKS, N. J., MAULE, A. G., LI, C., NELSON, L. S., THOMPSON, D. P., ALEXANDER-bowman, S., GEARY, T. G., HALTON, D. W., VERHAERT, P. & SHAW, C. ( 1999 a). Isolation, pharmacology and gene organisation of KPSFVRFamide: a neuropeptide from Caenorhabditis elegans. Biochemical and Biophysical Research Communications 254, 222230.Google Scholar
MARKS, N. J., SANGSTER, N. C., MAULE, A. G., HALTON, D. W., THOMPSON, D. P., GEARY, T. G. & SHAW, C. ( 1999 b). Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Molecular and Biochemical Parasitology 100, 185194.Google Scholar
MARKS, N. J., SHAW, C., MAULE, A. G., DAVIS, J. P., HALTON, D. W., VERHAERT, P., GEARY, T. G. & THOMPSON, D. P. ( 1996 b). Isolation of AF2 (KHEYLRFamide) from Caenorhabditis elegans: evidence for the presence of more than one FMRFamide-related peptide encoding gene. Biochemical and Biophysical Research Communications 217, 845851.Google Scholar
MATSUMOTO, S., BROWN, M. R., CRIM, J. W., VIGNA, S. R. & LEA, A. O. ( 1989). Isolation and primary structure of neuropeptides from the mosquito Aedes aegypti immunoreactive to FMRFamide antiserum. Insect Biochemistry 19, 277283.CrossRefGoogle Scholar
MAULE, A. G., BOWMAN, J. W., THOMPSON, D. P., MARKS, N. J., FRIEDMAN, A. R. & GEARY, T. G. ( 1996). FMRFamide-related peptides (FaRPs) in nematodes: occurrence and neuromuscular physiology. Parasitology 113, S119S135.CrossRefGoogle Scholar
MAULE, A. G., GEARY, T. G., BOWMAN, J. W., MARKS, N. J., BLAIR, K. L., HALTON, D. W., SHAW, C. & THOMPSON, D. P. ( 1995 a). Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invertebrate Neuroscience 1, 255265.Google Scholar
MAULE, A. G., MOUSLEY, A., MARKS, N. J., DAY, T. A., THOMPSON, D. P., GEARY, T. G. & HALTON, D. W. ( 2002). Neuropeptide signaling systems – potential drug targets for parasite and pest control. Current Topics in Medicinal Chemistry 2, 733758.CrossRefGoogle Scholar
MAULE, A. G., SHAW, C., BOWMAN, J. W., HALTON, D. W., THOMPSON, D. P., GEARY, T. G. & THIM, L. ( 1994 a). The FMRFamide-like neuropeptide AF2 (Ascaris suum) is present in the free-living nematode Panagrellus redivivus (Nematoda, Rhabditida). Parasitology 109, 351356.Google Scholar
MAULE, A. G., SHAW, C., BOWMAN, J. W., HALTON, D. W., THOMPSON, D. P., GEARY, T. G. & THIM, L. ( 1994 b). KSAYMRFamide: A novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochemical and Biophysical Research Communications 200, 973980.Google Scholar
MAULE, A. G., SHAW, C., BOWMAN, J. W., HALTON, D. W., THOMPSON, D. P., THIM, L., KUBIAK, T. M., MARTIN, R. A. & GEARY, T. G. ( 1995 b). Isolation and preliminary biological characterization of KPNFIRFamide, a novel FMRFamide-related peptide from the free-living nematode, Panagrellus redivivus. Peptides 16, 8793.Google Scholar
MAULE, A. G., SHAW, C., HALTON, D. W., CURRY, W. J. & THIM, L. ( 1994 c). RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.Google Scholar
MAULE, A. G., SHAW, C., HALTON, D. W. & THIM, L. ( 1993). GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm Moniezia expansa. Biochemical and Biophysical Research Communications 193, 10541060.CrossRefGoogle Scholar
MCVEIGH, P., LEECH, S., MAIR, G., MARKS, N. J., GEARY, T. G. & MAULE, A. G. ( 2005). Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. International Journal for Parasitology (in press).CrossRefGoogle Scholar
MEEUSEN, T., MERTENS, I., CLYNEN, E., BAGGERMAN, G., NICHOLS, R., NACHMAN, R. J., HUYBRECHTS, R., DE LOOF, A. & SCHOOFS, L. ( 2002). Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proceedings of the National Academy of Sciences, USA 99, 1536315368.CrossRefGoogle Scholar
MEEUSEN, T., MERTENS, I., DE LOOF, A. & SCHOOFS, L. ( 2003). G protein coupled receptors in invertebrates: a state of the art. International Review of Cytology 230, 189261.CrossRefGoogle Scholar
MERCIER, A. J., ORCHARD, I., TEBRUGGE, V. & SKERRETT, M. ( 1993). Isolation of two FMRFamide-related peptides from crayfish pericardial organs. Peptides 14, 137143.CrossRefGoogle Scholar
MERTENS, I., MEEUSEN, T., JANSSEN, T., NACHMAN, R. & SCHOOFS, L. ( 2005). Molecular characterization of two G protein-coupled receptor splice variants as FLP2 receptors in Caenorhabditis elegans. Biochemical and Biophysical Research Communications 330, 967974.CrossRefGoogle Scholar
MERTENS, I., VANDINGENEN, A., MEEUSEN, A., JANSSEN, T., LUYTEN, W., NACHMAN, R. J., DE LOOF, A. & SCHOOFS, L. ( 2004). Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Letters 573, 5560.Google Scholar
MEYERING-VOS, M., WU, X., HUANG, J., JINDRA, M., HOFFMANN, K. H. & SEHNAL, F. ( 2001). The allatostatin gene of the cricket Gryllus bimaculatus (Ensifera, Gryllidae). Molecular and Cellular Endocrinology 184, 103114.CrossRefGoogle Scholar
MOFFETT, C. L., BECKETT, A. M., MOUSLEY, A., GEARY, T. G., MARKS, N. J., HALTON, D. W., THOMPSON, D. P. & MAULE, A. G. ( 2001). The ovijector of Ascaris suum: multiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides. International Journal for Parasitology 33, 859876.Google Scholar
MONEYPENNY, C. G., KRESCHENKO, N., MOFFETT, C. L., HALTON, D. W., DAY, T. A. & MAULE, A. G. ( 2001). Physiological effects of FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis. Parasitology 122, 447455.CrossRefGoogle Scholar
MONEYPENNY, C. G., MAULE, A. G., HALTON, D. W., SHAW, C., GEARY, T. G., MOORE, S. & THOMPSON, D. P. ( 1997). Physiological effects of platyhelminth FMRFamide-related peptides on the motility of the monogenean Diclidophora merlangi. Parasitology 115, 281288.CrossRefGoogle Scholar
MOUSLEY, A., MARKS, N. J., HALTON, D. W., GEARY, T. G., THOMPSON, D. P. & MAULE, A. G. ( 2004). Arthropod FMRFamide-related peptides modulate muscle activity in helminths. International Journal for Parasitology 34, 755768.CrossRefGoogle Scholar
MOUSLEY, A., MARKS, N. J. & MAULE, A. G. ( 2004). Neuropeptide signalling: a repository of targets for novel endectocides? Trends in Parasitology 20, 482487.Google Scholar
MOUSLEY, A., MOFFETT, C. L., DUVE, H., THORPE, A., HALTON, D. W., GEARY, T. G., THOMPSON, D. P., MAULE, A. G. & MARKS, N. J. ( 2005). Expression and bioactivity of allatostatin-like neuropeptides in helminths. International Journal for Parasitology (in press).CrossRefGoogle Scholar
NACHMAN, R. J., HOLMAN, G. M., COOK, B. J., HADDON, W. F. & LING, N. ( 1986 a). Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Biochemical and Biophysical Research Communications 140, 357364.Google Scholar
NACHMAN, R. J., HOLMAN, G. M., HADDON, W. F. & LING, N. ( 1986 b). Leucosulfakinin, a sulphated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234, 7173.Google Scholar
NACHMAN, R. J., HOLMAN, G. M., HAYES, T. K. & BEIER, C. ( 1993). Structure-activity relationships for inhibitory insect myosuppressins: contrast with the stimulatory sulfakinins. Peptides 14, 665670.CrossRefGoogle Scholar
NACHMAN, R. J., OLENDER, E. H., ROBERTS, V. A., HOLMAN, G. M. & YAMAMOTO, D. ( 1996). A nonpeptidal peptidomimetic agonist of the insect FLRFamide myosuppressin family. Peptides 17, 313320.CrossRefGoogle Scholar
NAMBU, J. R., MURPHY-EROLOSH, C., ANDREWS, P. C., FEISTNER, G. J. & SCHELLER, R. H. ( 1988). Isolation and characterisation of a Drosophila neuropeptide gene. Neuron 1, 5561.CrossRefGoogle Scholar
Nässel, D. R. ( 2002). Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Progress in Neurobiology 68, 184.CrossRefGoogle Scholar
NATHOO, A. N., MOELLER, R. A., WESTLUND, B. A. & HART, A. C. ( 2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences, USA 98, 1400014005.CrossRefGoogle Scholar
NELSON, L. S., KIM, K., MEMMOTT, J. E. & LI, C. ( 1998). FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Molecular Brain Research 58, 103111.CrossRefGoogle Scholar
NELSON, L. S., ROSOFF, M. L. & LI, C. ( 1998). Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 281, 16861690.CrossRefGoogle Scholar
NICHOLS, R. ( 1992 a). Isolation and structural characterization of Drosophila TDVDHVFLRFamide and FMRFamide-containing neural peptides. Journal of Molecular Neuroscience 3, 213218.Google Scholar
NICHOLS, R. ( 1992 b). Isolation and expression of the Drosophila drosulfakinin neural peptide gene product, DSK-I. Molecular Cell Neuroscience 3, 342347.Google Scholar
NICHOLS, R. ( 2003). Signalling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Annual Review of Entomology 48, 485503.CrossRefGoogle Scholar
NICHOLS, R., BENDENA, W. G. & TOBE, S. S. ( 2002). Myotropic peptides in Drosophila melanogaster and the genes that encode them. Journal of Neurogenetics 16, 128.CrossRefGoogle Scholar
NICHOLS, R., LIM, I. & McCORMICK, J. ( 1999). Antisera to multiple antigenic peptides detect neuropeptide processing. Neuropeptides 33, 3540.CrossRefGoogle Scholar
NICHOLS, R., McCORMICK, J. & LIM, I. A. ( 1997). Multiple antigenic peptides designed to structurally related Drosophila peptides. Peptides 18, 4145.CrossRefGoogle Scholar
NICHOLS, R., McCORMICK, J. & LIM, I. A. ( 1999). Structure, function and expression of Drosophila melanogaster FMRFamide-related peptides. Annals of the New York Academy of Sciences 897, 264272.CrossRefGoogle Scholar
NICHOLS, R., STEPHEN, A., SCHNEUWLY, A. & DIXON, J. E. ( 1988). Identification of a Drosophila homologue to the vertebrate neuropeptide, cholecystokinin. Journal of Biological Chemistry 263, 1216712170.Google Scholar
ORCHARD, I., LANGE, A. B. & BENDENA, W. G. ( 2001). FMRFamide-related peptides: a multifunctional family of structurally related neuropeptides in insects. Advances in Insect Physiology 28, 267329.CrossRefGoogle Scholar
ORCHARD, I. & TE BRUGGE, V. ( 2002). Contractions associated with the salivary glands of the blood-feeding bug, Rhodnius prolixus: evidence for both a neural and neurohormonal coordination. Peptides 23, 693700.CrossRefGoogle Scholar
PEEFF, N. M., ORCHARD, I. & LANGE, A. B. ( 1993). The effects of FMRFamide-related peptides on insect (Locusta migratoria) visceral muscle. Journal of Insect Physiology 39, 207215.CrossRefGoogle Scholar
PEEFF, N. M., ORCHARD, I. & LANGE, A. B. ( 1994). Isolation, sequence and bioactivity of PDVDHVFLRFamide and ADVGHVFLRFamide peptides from the locust central nervous system. Peptides 15, 387392.CrossRefGoogle Scholar
POTTER, C. J. & LUO, L. ( 2003). Food for thought: an orphan receptor finds its ligands. Nature Neuroscience 1, 11191120.CrossRefGoogle Scholar
PRATT, G. E., FARNSWORTH, D. E., FOX, K. F., SIEGEL, N. R., McCORMACK, A. L., SHABANOWITZ, J., HUNT, D. F. & FAYEREISEN, R. ( 1991). Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with a tyrosine-rich address sequence. Proceedings of the National Academy of Sciences, USA 88, 24122416.CrossRefGoogle Scholar
PRATT, G. E., FARNSWORTH, D. E., SIEGEL N. R., FOK, K. F. & FEYEREISEN, R. ( 1989). Identification of an allatostatin from adult Diploptera punctata. Biochemical and Biophysical Research Communications 163, 12431247.CrossRefGoogle Scholar
PREDEL, R., RAPUS, J. & MANFRED, E. ( 2001). Myoinhibitory neuropeptides in the American cockroach. Peptides 22, 199208.CrossRefGoogle Scholar
PREDEL, R., WEGENER, C., RUSSELL, W. K., TICHY, S. E., RUSSELL, D. H. & NACHMAN, R. J. ( 2004). Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. Journal of Comparative Neurology 28, 379392.CrossRefGoogle Scholar
PRICE, D. A. & GREENBERG, M. J. ( 1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670671.CrossRefGoogle Scholar
PRICE, M. D., MERTE, J., NICHOLS, R., KOLADICH, P. M., TOBE, S. S. & BENDENA, W. G. ( 2002). Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 23, 787794.CrossRefGoogle Scholar
PURCELL, J., ROBERTSON, A. P., THOMPSON, D. P. & MARTIN, R. J. ( 2002 a). PF4, a FMRFamide-related peptide, gates low-conductance Cl(-) channels in Ascaris suum. European Journal of Pharmacology 456, 1117.Google Scholar
PURCELL, J., ROBERTSON, A. P., THOMPSON, D. P. & MARTIN, R. J. ( 2002 b). The time-course of the response to the FMRFamide-related peptide PF4 in Ascaris suum muscle cells indicate direct gating of a chloride ion-channel. Parasitology 124, 649656.Google Scholar
RACHINSKY, A. & FELDLAUFER, M. F. ( 2000). Responsiveness of honey bee (Apis mellifera L.) corpora allata to allatoregulatory peptides from four insect species. Journal of Insect Physiology 46, 4146.Google Scholar
RANKIN, S. M., GARSIDE, C. S., CHRISTOPHER, C. A. & TOBE, S. S. ( 1998). Partial characterization and isolation of earwig ‘allatostatins’: biological activities in earwigs and cockroaches. Comparative Biochemistry and Physiology Part A 121, 395403.CrossRefGoogle Scholar
REINHARD, P. & GADE, G. ( 2005). Peptidomics of neurohemal organs from species of the cockroach family Blattidae: how do neuropeptides of closely related species differ? Peptides 26, 39.Google Scholar
REINITZ, C. A., HERFEL, H. G., MESSINGER, L. A. & STRETTON, A. O. W. ( 2000). Changes in locomotory behavior and cAMP produced in Ascaris suum by neuropeptides from Ascaris suum or Caenorhabditis elegans. Molecular and Biochemical Parasitology 111, 185197.CrossRefGoogle Scholar
RICHER, S., STOFFOLANO, J. G. jr., YIN, C. M. & NICHOLS, R. ( 2000). Innervation of dromyosuppressin (DMS) immunoreactive processes and effect of DMS and benzethonium chloride on the Phormia regina (Meigen) crop. Journal of Comparative Neurology 421, 136142.3.0.CO;2-C>CrossRefGoogle Scholar
ROBB, S. & EVANS, P. D. ( 1994). The modulatory effect of schistoFLRFamide on heart and skeletal muscle in the locust Schistocerca gregaria. Journal of Experimental Biology 197, 437442.Google Scholar
ROBB, S., PACKMAN, L. C. & EVANS, P. D. ( 1989). Isolation, primary structure and bioactivity of SchistoFLRFamide, a FMRFamide-like neuropeptide from the locust, Schistocerca gregaria. Biochemical and Biophysical Research Communications 160, 850856.CrossRefGoogle Scholar
ROGERS, C. M., FRANKS, C. J., WALKER, R. J., BURKE, J. F. & HOLDEN-DYE, L. ( 2001). Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. Journal of Neurobiology 49, 235244.CrossRefGoogle Scholar
ROGERS, C., REALE, V., KIM, K., CHATWIN, H., LI, C., EVANS, P. & DE BONO, M. ( 2003). Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neuroscience 6, 11781185.CrossRefGoogle Scholar
ROSOFF, M., BURGLIN, T. & LI, C. ( 1992). Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. Journal of Neuroscience 12, 10331039.CrossRefGoogle Scholar
ROSOFF, M. L., DOBLE, K. E., PRICE, D. A. & LI, C. ( 1993). The flp-1 propeptide is processed into multiple highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 14, 331338.CrossRefGoogle Scholar
SCHINKMAN, K. & LI, C. ( 1992). Localization of FMRFamide-like peptides in Caenorhabditis elegans. Journal of Comparative Neurology 316, 251260.CrossRefGoogle Scholar
SCHNEIDER, L. E. & TAGHERT, P. H. ( 1988). Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proceedings of the National Academy of Sciences, USA 85, 11931197.CrossRefGoogle Scholar
SCHOLLER, S., BELMONT, M., CAZZAMALI, G., HAUSER, F., WILLIAMSON, M. & GRIMMELIKHUIJZEN, C. J. P. ( 2005). Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications 327, 2934.CrossRefGoogle Scholar
SCHOOFS, L. & BAGGERMAN, G. ( 2003). Peptidomics in Drosophila melanogaster. Briefings in Functional Genomics and Proteomics 2, 114120.CrossRefGoogle Scholar
SCHOOFS, L., HOLMAN, G. M., HAYES, T. K., NACHMAN, R. J. & DE LOOF, A. ( 1990). Isolation and identification of a sulfakinin-like peptide with sequence homology to vertebrate gastrin and cholecystokinin, from the brain of Locusta migratoria. In Chromatography and Isolation of Insect Hormones and Pheromones ( ed. McCaffery, A. & Wilson, I.), pp. 231241. Plenum Press, New York.CrossRef
SCHOOFS, L., HOLMAN, G. M., PAEMAN, L., VEELAERT, D., AMELINCKX, M. & DE loof, A. ( 1993). Isolation, identification and synthesis of PDVDHVFLRFamide (SchistoFLRFamide) in Locusta migratoria and its association with the male accessory glands, the salivary glands, the heart, and the oviduct. Peptides 14, 409421.CrossRefGoogle Scholar
SECHER, T., LENZ, C., CAZZAMALI, G., SORENSON, G., WILLIAMSON, M., HANSEN, G. N., SVANE, P. & GRIMMELIKHUIJZEN, C. J. ( 2001). Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. Journal of Biological Chemistry 276, 4705247060.CrossRefGoogle Scholar
SITHIGORNGUL, P., SARAITHONGKUM, W., JAIDEECHOEY, S., LONGYANT, S. & SITHIGORNGUL, W. ( 1998). Novel FMRFamide-like neuropeptides from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergi. Comparative Biochemistry and Physiology 120, 587595.CrossRefGoogle Scholar
SITHIGORNGUL, P., SARAITHONGKUM, W., LONGYANT, S., PANCHAN, N., SITHIGORNGUL, W. & PETSOM, A. ( 2001). Three more novel FMRFamide-like sequences from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergii. Peptides 22, 191197.CrossRefGoogle Scholar
SMART, D., JOHNSTON, C. F., CURRY, W. J., WILLIAMSON, R., MAULE, A. G., SKUCE, P. J., SHAW, C., HALTON, D. W. & BUCHANAN, K. D. ( 1994). Peptides related to the Diploptera punctata allatostatins in nonarthropod invertebrates: an immunocytochemical survey. Journal of Comparative Neurology 347, 426432.CrossRefGoogle Scholar
SMART, D., JOHNSTON, C. F., MAULE, A. G., HALTON, D. W., HRČKOVA, G., SHAW, C. & BUCHANAN, K. D. ( 1995). Localization of Diploptera punctata allatostatin-like immunoreactivity in helminths: an immunocytochemical survey. Parasitology 110, 8796.CrossRefGoogle Scholar
SPITTAELS, K., DEVREESE, B., SCHOOFS, L., NEVEN, H., JANSSEN, I., GRAUWELS, L., VAN, B. J. & DE loof, A. ( 1996). Isolation and identification of a cAMP generating peptide from the flesh fly, Neobellieria bullata (Diptera: Sarcophagidae). Archives of Insect Biochemistry and Physiology 31, 135147.3.0.CO;2-Z>CrossRefGoogle Scholar
STRETTON, A., DONMOYER, J., DAVIS, R., MEADE, J., COWDEN, C. & SITHIGORNGUL, P. ( 1992). Motor behavior and motor nervous system function in the nematode Ascaris suum. Journal of Parasitology 78, 206214.CrossRefGoogle Scholar
TAGHERT, P. H. & VEENSTRA, J. A. ( 2003). Drosophila neuropeptide signaling. Advances in Genetics 49, 165.CrossRefGoogle Scholar
THOMPSON, D. P., DAVIS, J. P., LARSEN, M. J., COSCARELLI, E. M., ZINSER, E. W., BOWMAN, J. W., ALEXANDER-BOWMAN, S. J., MARKS, N. J. & GEARY, T. G. ( 2003). Effects of KHEYLRFamide and KNEFIRFamide on cyclic adenosine monophosphate levels in Ascaris suum somatic muscle. International Journal for Parasitology 33, 199208.CrossRefGoogle Scholar
THOMPSON, D. P., KLEIN, R. D. & GEARY, T. G. ( 1996). Prospects for rational approaches to anthelmintic discovery. Parasitology 113, S217S238.CrossRefGoogle Scholar
THORPE, A., JOHNSEN, A. H., REHFELD, J. F., EAST, P. D. & DUVE, H. ( 1995). Insect neuropeptide hormones: unity and diversity. Netherlands Journal of Zoology 45, 251259.Google Scholar
TORFS, P., BAGGERMAN, G., MEEUSEN, T., NIETO, J., NACHMAN, R. J., CALDERON, J., DE LOOF, A. & SCHOOFS, L. ( 2002). Isolation, identification, and synthesis of a disulfated sulfakinin from the central nervous system of an arthropod, the white shrimp Litopenaeus vannamei. Biochemical Biophysical Research Communications 299, 312320.CrossRefGoogle Scholar
TRAILOVIC, S. M., CLARK, C. L., ROBERTSON, A. P. & MARTIN, R. J. ( 2005). Brief application of AF2 produces long lasting potentiation of nAChR responses in Ascaris suum. Molecular and Biochemical Parasitology 139, 5164.CrossRefGoogle Scholar
TRIM, N., BOORMAN, J. E., HOLDEN-DYE, L. & WALKER, R. J. ( 1998). The role of cAMP in the actions of the peptide AF3 in the parasitic nematodes Ascaris suum and Ascarida galli. Molecular and Biochemical Parasitology 93, 263271.CrossRefGoogle Scholar
TRIM, N., HOLDEN-DYE, L., RUDDELL, R. & WALKER, R. J. ( 1997). The effects of the peptides AF3 (AVPGVLRFamide) and AF4 (GDVPGVLRFamide) on the somatic muscle of the parasitic nematodes Ascaris suum and Ascaridia galli. Parasitology 115, 213222.CrossRefGoogle Scholar
TRIMMER, B. A., KOBIERSKI, L. A. & KRAVITZ, E. A. ( 1987). Purification and characterisation of FMRFamide-like immunoreactive substances from lobster nervous system and sequence analysis of two closely related peptides. Journal of Comparative Neurology 266, 1626.CrossRefGoogle Scholar
VANDEN BROECK, J. ( 2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241254.CrossRefGoogle Scholar
VANDEN BROECK, J., VEELAERT, D., BENDENA, W. G., TOBE, S. S. & DE loof, A. ( 1996). Molecular cloning of the precursor cDNA for schistostatins, Locusta allatostatin-like peptides with myoinhibiting properties. Molecular and Cellular Endocrinology 122, 191198.CrossRefGoogle Scholar
VEELAERT, D., DEVREESE, B., SCHOOFS, L., VAN BEEUMEN, J., VANDEN BROECK, J., TOBE, S. S. & DE LOOF, A. ( 1996 a). Isolation and characterization of eight myoinhibiting peptides from the desert locust, Schistocerca gregaria: new members of the cockroach allatostatin family. Molecular and Cellular Endocrinology 122, 183190.Google Scholar
VEELAERT, D., DEVREESE, B., VANDEN BROECK, J., YU, C. G., SCHOOFS, L., VAN BEEUMEN, J., TOBE, S. S. & DE LOOF, A. ( 1996 b). Isolation and characterization of schistostatin-211–18 from the desert locust, Schistocerca gregaria: a truncated analog of schistostatin-2. Regulatory Peptides 67, 195199.Google Scholar
VEENSTRA, J. A. ( 1989). Isolation and structure of two gastrin/CCK-like neuropeptides from the American cockroach homologous to the leucosulfakinins. Neuropeptides 14, 145149.CrossRefGoogle Scholar
VEENSTRA, J. A. ( 1999). Isolation and identification of three RFamide-immunoreactive peptides from the mosquito Aedes aegypti. Peptides 20, 3138.CrossRefGoogle Scholar
VEENSTRA, J. A. & LAMBROU, G. ( 1995). Isolation of a novel RFamide peptide from the midgut of the American cockroach, Periplaneta americana. Biochemical and Biophysical Research Communications 213, 519524.CrossRefGoogle Scholar
VEENSTRA, J. A., NORIEGA, F. G., GRAF, R. & FEYEREISEN, R. ( 1997). Identification of three allatostatins and their cDNA from the mosquito Aedes aegypti. Peptides 18, 937942.CrossRefGoogle Scholar
VERHAERT, P., UTTENWEILER-JOSEPH, S., DE VRIES, M., LOBODA, A., ENS, W. & STANDING, K. G. ( 2001). Matrix-assisted laser desorption/ionisation quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1, 118131.3.0.CO;2-1>CrossRefGoogle Scholar
VERLEYEN, P., BAGGERMAN, G., WIEHART, U., SCHOETERS, E., VAN LOMMEL, A., DE LOOF, A. & SCHOOFS, L. ( 2004 a). Expression of a novel neuropeptide, NVGTLARDFQLPIPNamide, in the larval and adult brain of Drosophila melanogaster. Journal of Neurochemistry 88, 311319.Google Scholar
VERLEYEN, P., HUYBRECHTS, J., SAS, F., CLYNEN, E., BAGGERMAN, G., DE LOOF, A. & SCHOOFS, L. ( 2004 b). Neuropeptidomics of the grey flesh fly, Neobelliera bullata. Biochemical and Biophysical Research Communications 316, 763770.Google Scholar
VILAPLANA, V., CASTRESANA, J. & BELLÉs, X. ( 2004). The cDNA for leucomyosuppressin in Blattella germanica and molecular evolution of insect mysuppressins. Peptides 25, 18831889.CrossRefGoogle Scholar
VILAPLANA, L., MAESTRO, J. L., PIULACHS, M.-D. & BELLÉs, X. ( 1999). Modulation of cardiac rhythm by allatostatins in the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Journal of Insect Physiology 45, 10571064.CrossRefGoogle Scholar
WAGGONER, L. E., HARDAKER, L. A., GOLIK, S. & SCHAFER, W. R. ( 2000). Effect of a neuropeptide gene on behavioural states in Caenorhabditis elegans egg-laying. Genetics 154, 11811192.Google Scholar
WANG, Z. X., LANGE, A. B. & ORCHARD, I. ( 1995). Coupling of a single receptor to two different G proteins in the signal transduction of FMRFamide related peptides. Biochemical and Biophysical Research Communications 212, 531538.CrossRefGoogle Scholar
WANG, Z., ORCHARD, I. & LANGE, A. B. ( 1995). Binding affinity and physiological activity of some HVFLRFamide analogues on the oviducts of the locust, Locusta migratoria. Regulatory Peptides 57, 339346.CrossRefGoogle Scholar
WANG, Z., ORCHARD, I., LANGE, A. B. & CHEN, X. ( 1995 a). Binding and activation regions of the decapeptide PDVDHVFLRFamide (schistoFLRFamide). Neuropeptides 28, 261266.Google Scholar
WANG, Z. X., ORCHARD, I., LANGE, A. B., CHEN, X. & STARRAT, A. N. ( 1995 b). A single receptor transduces both inhibitory and stimulatory signals of FMRFamide-related peptides. Peptides 16, 11811186.Google Scholar
WEAVER, R. J., FREEMAN, Z. A., PICKERING, M. G. & EDWARDS, J. P. ( 1994). Identification of two allatostatins from the CNS of the cockroach Periplaneta americana: novel members of a family of neuropeptide inhibitors of insect juvenile hormone biosynthesis. Comparative Biochemistry and Physiology 107, 119127.CrossRefGoogle Scholar
WOLSTENHOLME, A. J., FAIRWEATHER, I., PRICHARD, R., VON SAMSON-HIMMELSTJERNA, G. & SANGSTER, N. C. ( 2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle Scholar
WOOD, S. J., OSBORNE, R. H., BANNER, S. E. & CATTELL, K. J. ( 1992). Effects of FMRFamide-related peptides and morphine on the isolated foregut of the locust Schistocerca gregaria. Comparative Biochemistry and Physiology 103, 315320.CrossRefGoogle Scholar
WOODHEAD, A. P., KHAN, M. A., STAY, B. & TOBE, S. S. ( 1994). Two new allatostatins from the brain of Diploptera punctata. Insect Biochemistry and Molecular Biology 24, 257263.CrossRefGoogle Scholar
WOODHEAD, A. P., STAY, B., SEIDEL, S. L., KHAN, M. A. & TOBE, S. S. ( 1989). Primary structure of four allatostatins: Neuropeptide inhibitors of juvenile hormone synthesis. Proceedings of the National Academy of Sciences, USA 86, 59976001.CrossRefGoogle Scholar
YU, C. G., STAY, B., BENDENA, W. G. & TOBE, S. S. ( 1995). Immunohistochemical identification and expression of allatostatins in the gut of Diplotera punctata. Journal of Insect Physiology 41, 10351043.CrossRefGoogle Scholar
ZELSTER, I., GILON, C., BEN-AZIZ, O., SCHEFLER, I. & ALTSTEIN, M. ( 2000). Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21, 14571465.Google Scholar