Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:41:42.121Z Has data issue: false hasContentIssue false

The interactions between drugs and the parasite surface

Published online by Cambridge University Press:  23 August 2011

L. H. Chappell
Affiliation:
Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB9 2TN, Scotland

Summary

The interrelationships between drugs and parasite surfaces are considered under the headings of (a) effects on membrane transport, (b) drug uptake mechanisms and (c) effects on surface morphology and function: praziquantel is discussed under a separate heading. The range of chemotherapeutic compounds that cause permeability changes and concomitant morphological disruption is discussed in terms of mode of drug action. Interpretation of the available data renders it difficult to identify the primary mode of action in the drugs considered. Drug uptake mechanisms are known for relatively few compounds; drug resistance as a function of drug acquisition is discussed. The role of the parasite surface as a specific drug target is argued.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Dabagh, M. A., Al-Moslih, M. I., Verheyen, A., Shafik, M. A., Al-Janabi, T. A., Al-Rawas, A. Y., Ismail, M. A., Fawzi, A. H., Al-Ani, M. S. & Rassam, S. (1981). The effect of mebendazole on sheep hydatid cysts as demonstrated by electron microscopy. Journal of Parasitology 67, 709–12.Google Scholar
Alving, C. R., Steck, E. A., Chapman, W. L., Waits, V. B., Hendricks, L., Swartz, G. H. & Hanson, W. C. (1978). Therapy of leishmaniasis: superior efficacies of liposome encapsulated drugs. Proceedings of the National Academy of Sciences, USA 75, 2959–63.CrossRefGoogle ScholarPubMed
Andrews, P. (1985). Praziquantel: mechanisms of anti-schistosomal activity. Pharmacology and Therapeutics 29, 129–56.CrossRefGoogle ScholarPubMed
Andrews, P., Thomas, H., Pohlke, R. & Seubert, J. (1983). Praziquantel. Medicinal Research Reviews 3, 147200.CrossRefGoogle ScholarPubMed
Andrews, P., Thomas, H. & Weber, H. (1980). The in vitro uptake of 14C-praziquantel by cestodes, trematodes and a nematode. Journal of Parasitology 66, 920–5.Google Scholar
Atkinson, K. H. & Atkinson, B. G. (1980). Biochemical basis for the continuous copulation of female Schistosoma mansoni. Nature, London 283, 478–9.Google Scholar
Bacchi, C. J., Garofalo, J., Mockenhaupt, D., McCann, P. P., Diekema, K. A., Pegg, A. E., Nathan, H. C., Mullaney, E. A., Chunosoff, L., Sjoerdsma, A. & Hutner, S. H. (1983). In vivo effects of α-DL-difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei. Molecular and Biochemical Parasitology 7, 209–25.Google Scholar
Becker, B., Mehlhorn, H., Andrews, P. & Thomas, H. (1980). Scanning and transmission electron microscope studies on the efficacy of praziquantel on Hymenolepis nana (Cestoda) in vitro. Zeitschrift für Parasitenkunde 61, 121–33.Google Scholar
Becker, B., Mehlhorn, H., Andrews, P. & Thomas, H. (1981). Ultrastructural investigations on the effect of praziquantel on the tegument of five species of cestodes. Zeitschrift für Parasitenkunde 64, 257–69.CrossRefGoogle ScholarPubMed
Becker, B., Mehlhorn, H., Andrews, P., Thomas, H. & Eckert, J. (1980). Light and electron microscopic (SEM, TEM) studies on the effect of praziquantel on Schistosoma mansoni, Dicrocoelium dendriticum and Fasciola hepatica (Trematoda) in vitro. Zeitschrift für Parasitenkunde 63, 113–28.CrossRefGoogle ScholarPubMed
Bennett, J. L. (1980). Characteristics of antischistosomal benzodiazepine binding sites in Schistosoma mansoni. Journal of Parasitology 66, 742–7.Google Scholar
Bennett, J. L. & Bueding, E. (1973). Uptake of 5-hydroxytryptamine by Schistosoma mansoni. Molecular Pharmacology 9, 311–19.Google Scholar
Bennett, J. L. & Kohler, P. (1987). Fasciola hepatica: action in vitro of triclabendazole on immature and adult stages. Experimental Parasitology 63, 4957.Google Scholar
Bennett, J. L. & Thompson, D. P. (1986). Mode of action of antitrematodal agents. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 427–43. New York: Plenum.Google Scholar
Berman, J. D., Holz, G. G. & Beach, D. H. (1984). Effects of ketoconazole on growth and sterol biosynthesis of Leishmania mexicana promastigotes in culture. Molecular and Biochemical Parasitology 12, 113.CrossRefGoogle ScholarPubMed
Black, C. D. V., Watson, G. J. & Ward, R. J. (1977). The use of pentostam liposomes on the chemotherapy of experimental leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 550–2.CrossRefGoogle ScholarPubMed
Bogitsh, B. J. (1977). Schistosoma mansoni: colchicine and vinblastine effects on schistosomule digestive tract development in vitro. Experimental Parasitology 43, 180–8.Google Scholar
Bogitsh, B. J. & Carter, O. S. (1977). Schistosoma mansoni: ultrastructural studies on the esophageal secretory granules. Journal of Parasitology 63, 681–6.CrossRefGoogle ScholarPubMed
Bogitsh, B. J. & Carter, O. S. (1980). Schistosoma mansoni: radioautography of colchicine's effect on 3[H]proline incorporation into adults in vitro. Experimental Parasitology 49, 319–27.Google Scholar
Borgers, M., De Nollin, S., De Brabander, M. & Thienpont, D. (1975). Influence of anthelmintic mebendazole on microtubules and intracellular movement in nematode intestinal cells. American Journal of Veterinary Research 36, 1153–66.Google Scholar
Borgers, M., De Nollin, S., Verheyen, A., Vanparijs, O. & Thienpont, D. (1975). Morphological changes in cysticerci of Taenia taeniaeformis after mebendazole treatment. Journal of Parasitology 61, 830–43.CrossRefGoogle ScholarPubMed
Borgers, M. & Verheyen, A. (1976). The role of microtubules in the tegument of cestodes. Journal of Cell Biology 70, 90a.Google Scholar
Bricker, C. S., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument and subtegumental compartments of male Schistosoma mansoni: anatomical location of sources of electrical potentials. Parasitology 85, 149–61.CrossRefGoogle ScholarPubMed
Brindley, P. J. & Sher, A. (1987). The chemotherapeutic effect of praziquantel against Schistosoma mansoni is dependent on host antibody response. Journal of Immunology 139, 215–20.CrossRefGoogle ScholarPubMed
Brown, H. D., Matzuk, A. R., Ilves, I. R., Peterson, L. H., Harris, S. A., Sarett, L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961). Antiparasitic drugs IV. 2-(4′-thiazolyl)-benzimidazole, a new anthelmintic. Journal of the American Chemical Society 83, 1764–5.Google Scholar
Bueding, E. (1962). Effect of benzylic diamines on Schistosoma mansoni. Biochemical Pharmacology 11, 1728.Google Scholar
Campbell, W. C. (1986 a). The chemotherapy of parasitic infections. Journal of Parasitology 72, 4561.CrossRefGoogle ScholarPubMed
Campbell, W. C. (1986 b). Historical introduction. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 321. New York: Plenum Press.Google Scholar
Campbell, W. C. & Rew, R. S. (1986). Chemotherapy of Parasitic Diseases. New York: Plenum Press.CrossRefGoogle Scholar
Carme, B., Richard-Lenoble, D., Agmar, A., Danis, M. & Gentilini, M. (1982). Litomosoides carinii infection in cotton rats before and after treatment with diethylcarbamazine and suramin: evolution of free serum antigens. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 454–7.Google Scholar
Catto, B. A. & Ottesen, E. A. (1979). Serotonin uptake in schistosomules of Schistosoma mansoni. Comparative Biochemistry and Physiology 63, 235–42.Google Scholar
Catto, B. A., Tracy, J. W. & Webster, L. T. (1984). 1-Thiocarbamoyl-2-imidazolidinone, a metabolite of niridazole in Schistosoma mansoni. Molecular and Biochemical Parasitology 10, 111–20.Google Scholar
Chapman, H. D. (1978). Drug resistance in coccidia. In Avian Coccidiosis (ed. Long, P. L., Boorman, K. N. and Freeman, R. M.), pp. 387412. Edinburgh: British Poultry Science.Google Scholar
Chubb, J. M., Bennett, J. L., Akera, T. & Brody, T. M. (1978). Effects of praziquantel, a new anthelmintic, on electromechanical properties of isolated rat atria. Journal of Pharmacology and Experimental Therapeutics 207, 284–93.Google ScholarPubMed
Clarkson, J. & Erasmus, D. A. (1984). Schistosoma mansoni: an in vivo study of drug-induced autophagy in the gastrodermis. Journal of Helminthology 58, 5968.CrossRefGoogle Scholar
Coles, G. C. (1977). The biochemical mode of action of some modern anthelmintics. Pesticide Science 8, 536–43.CrossRefGoogle Scholar
Coles, G. C. (1979). The effect of praziquantel on Schistosoma mansoni. Journal of Helminthology 53, 31–3.Google Scholar
Coles, G. C. (1983). Chemotherapy and the effects of chemotherapeutic agents. In Biology of the Eucestoda, vol. 2, (ed. Arme, C. and Pappas, P. W.), pp. 581628. New York: Academic Press.Google Scholar
Coles, G. C. & Chappell, L. H. (1979). Schistosoma mansoni: effects of antimony on immature and adult worms. Experimental Parasitology 47, 4953.Google Scholar
Conder, G. A., Marchiondo, A. A. & Anderson, F. L. (1981). Effect of praziquantel on adult Echinococcus granulosus in vitro: scanning electron microscopy. Zeitschrift für Parasitenkunde 66, 191–9.CrossRefGoogle ScholarPubMed
Cornford, E. M. & Huot, M. E. (1981). Glucose transfer from male to female schistosomes. Science 213, 1169–71.Google Scholar
Criado Fornelio, A., Rodriguez Caabeiro, F. & Jimenez Gonzalez, A. (1987). The mode of action of some benzimidazole drugs on Trichinella spiralis. Parasitology 95, 6170.Google Scholar
Damper, D. & Patton, C. L. (1976). Pentamidine transport in Trypanosoma brucei: kinetics and specificity. Biochemical Pharmacology 25, 271–6.Google Scholar
Dawes, B. & Hughes, D. L. (1964). Fascioliasis: the invasive stages of Fasciola hepatica in mammalian hosts. In Advances in Parasitology 2 (ed. Dawes, B.), pp. 97168. London: Academic Press.Google Scholar
Denham, D. A. (1985). Chemotherapy of Parasites. In Symposia of the British Society for Parasitology, vol. 22, Parasitology 90, 613721.Google Scholar
Depenbusch, J. W., Bricker, C. S., Bennett, J. L. & Pax, R. A. (1982). Effect of Triton X-100 on tegument and muscle in Schistosoma mansoni. Journal of Parasitology 68, 884–91.Google Scholar
Dewes, H., Ostergaard, H. L. & Simpson, L. (1986). Impaired drug uptake in methotrexate resistant Crithidia fasciculata without changes in dihydrofolate reductase activity or gene amplification. Molecular and Biochemical Parasitology 19, 149–61.CrossRefGoogle ScholarPubMed
Docampo, R., Moreno, S. N. J., Turrens, J. F., Katzin, A. M., Gonzalez-Cappa, S. M. & Stoppani, A. O. M. (1981). Biochemical and ultrastructural alterations produced by miconazole and econazole in Trypanosoma cruzi. Molecular and Biochemical Parasitology 3, 169–80.Google Scholar
Doenhoff, M. J. & Bain, J. (1978). The immune dependence of schistosomicidal chemotherapy: relative lack of efficacy of an antimonial in Schistosoma mansoni-infected mice deprived of their T-cells and the demonstration of drug-antiserum synergy. Clinical and Experimental Immunology 33, 232–8.Google Scholar
Doenhoff, M., Harrison, R., Sabah, A., Murare, H., Dunne, D. & Hassounah, O. (1982). Schistosomiasis in the immunosuppressed host: studies on the host–parasite relationship of Schistosoma mauroni and S. bovis in T-cell deprived and hydrocortisone-treated mice. In Animal Models in Parasitology, (ed. Owen, D. G.), pp. 155–69. London: McMillan Press.Google Scholar
Düwel, D. (1977). Panacur – the development of a new broad-spectrum antibiotic. The Blue Book for the Veterinary Profession 27, 237–51.Google Scholar
Edwards, D. I. (1981). Mechanisms of cytotoxicity of nitroimidazole drugs. Progress in Medicinal Chemistry 18, 88116.Google Scholar
Edwards, S. R., Campbell, A. J., Sheer, M., Moore, R. J. & Montague, P. E. (1981). Studies on the effect of diamphenethide and oxyclozanide on the metabolism of Fasciola hepatica. Molecular and Biochemical Parasitology 2, 323–38.Google Scholar
Erasmus, D. A. & Popiel, I. (1980). Schistosoma mansoni: drug induced changes in the cell population of the vitelline gland. Experimental Parasitology 50, 171–87.Google Scholar
Etges, D. J. & Bogitsh, B. J. (1985). The effect of colchicine on translocation of incorporated [3H]proline in Hymenolepis diminuta. Journal of Parasitology 71, 290–6.Google Scholar
Fairlamb, A. H. & Bowman, E. B. R. (1980). Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effects on respiration and growth rate in vivo. Molecular and Biochemical Parasitology 1, 315–33.CrossRefGoogle ScholarPubMed
Fairweather, I., Anderson, H. R. & Threadgold, L. T. (1986). Fasciola hepatica: tegumental changes induced in vitro by the deacetylated (amine) metabolite of diamphenethide. Experimental Parasitology 62, 336–48.CrossRefGoogle ScholarPubMed
Fetterer, R. H., Pax, R. A., Thompson, D., Bricker, C. & Bennett, J. L. (1980). Praziquantel: mode of its antischistosomal action. In The Host – Invader Interplay (ed. Bossche, H. Van den), pp. 695–8. Amsterdam: Elsevier – North Holland.Google Scholar
Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980). Praziquantel, potassium and 2,4-dinitro-phenol: analysis of their action on the musculature of Schistosoma mansoni. European Journal of Pharmacology 64, 31–8.Google Scholar
Fitch, C. D. (1983). Mode of action of antimalarial drugs. In Malaria and the Red Cell, CIBA Foundation Symposium 94, pp. 222–32. London: Pitman.Google Scholar
Geary, T. G., Edgar, S. A. & Jensen, J. B. (1986). Drug resistance in Protozoa. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 209–36. New York: Plenum Press.CrossRefGoogle Scholar
Gemmell, M. A. & Johnstone, P. D. (1981). Cestodes. Antibiotics and Chemotherapy 30, 54114.Google Scholar
Gemmell, M. A. & Parmeter, S. N. (1983). Effects of praziquantel against eggs of Taenia hydatigena and protoscoleces and metacestodes of Echinococcus granulosus. Veterinary Medical Review 1, 39.Google Scholar
Gonnert, R. & Andrews, P. (1977). Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkunde 52, 129–50.Google Scholar
Gutteridge, W. E. (1969). Some effects of pentamidine di-isethionate on Crithidia fasciculata. Journal of Protozoology 16, 306–11.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. (1985). Existing chemotherapy and its limitations. British Medical Journal 41, 162–8.Google Scholar
Hammond, D. J., Cover, B. & Gutteridge, W. E. (1984). A novel series of chemical structures active in vitro against the trypomastigote form of Trypanosoma cruzi. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 91–5.CrossRefGoogle ScholarPubMed
Harder, A., Andrews, P. & Thomas, H. (1987 a). Praziquantel: mode of action. Biochemical Society Transactions 15, 6870.Google Scholar
Harder, A., Andrews, P. & Thomas, H. (1987 b). Chlorpromazine, other amphiphilic cationic drugs and praziquantel: effects on carbohydrate metabolism of Schistosoma mansoni. Parasitology Research 73, 245–9.Google Scholar
Harder, A., Andrews, P. & Thomas, H. (1987 c). Effects of praziquantel and fluoxetine on synthetic phospholipid membranes. Parasitology 95, 653. (Abstract.)Google Scholar
Harder, A., Abbink, J., Andrews, P. & Thomas, H. (1987). Praziquantel impairs the ability of exogenous serotonin to stimulate carbohydrate metabolism in intact Schistosoma mansoni. Parasitology Research (in the Press).CrossRefGoogle Scholar
Harnett, W. & Kusel, J. R. (1986). Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro. Parasitology 93, 401–5.Google Scholar
Hart, R. J., Turner, R. & Wilson, R. G. (1977). A biochemical and ultrastructural study of the mode of action of bunamidine against Hymenolepis nana. International Journal for Parasitology 7, 129–34.Google Scholar
Hawking, F. (1938). Analysis of the trypanocidal action of trivalent arsenicals and acriflavine. Annals of Tropical Medicine and Parasitology 32, 313–31.Google Scholar
Heath, S., Chance, M. L. & New, R. R. C. (1984). Quantitative and ultrastructural studies on the uptake of drug loaded liposomes by mononuclear phagocytes infected with Leishmania donovani. Molecular and Biochemical Parasitology 12, 4960.Google Scholar
Heath, D. D. & Lawrence, S. B. (1978). The effect of mebendazole and praziquantel on the cysts of Echinococcus granulosus, Taenia hydatigena and T. ovis in sheep. New Zealand Veterinary Journal 26, 1115.Google Scholar
Hess, R., Faigle, J. W. & Lambert, C. (1966). Selective uptake of an anti-bilharzial nitrothiazole compound by Schistosoma mansoni. Nature, London 210, 964–5.Google Scholar
Hipkiss, J. B., Skinner, A. & Branford White, C. J. (1987). Biochemical and ultrastructural investigation of the effect of stelazine (trifluoperazine) on Hymenolepis diminuta (Cestoda). Parasitology 94, 135–49.CrossRefGoogle ScholarPubMed
Hipkiss, J. B., Branford White, C. J. & Peters, T. J. (1987). Effect of phenothiazines on Hymenolepis diminuta with special reference to the brush-border Ca2+-dependent ATPase. Molecular and Biochemical Parasitology 22, 5563.Google Scholar
Howells, R. E. (1980). Filariae: dynamics of the surface. In The Host – Invader Interplay (ed. Bossche, H. Van den), pp. 6984. Amsterdam: Elsevier – North Holland.Google Scholar
Howells, R. E. & Chen, S. N. (1981). Brugia pahangi: feeding and nutrient uptake in vitro and in vivo. Experimental Parasitology 51, 4258.Google Scholar
Howells, R. E., Mendis, A. M. & Bray, P. G. (1983). The mode of action of suramin on the filarial worm Brugia pahangi. Parasitology 87, 2948.Google Scholar
Ings, R. M. J., McFadzean, J. A. & Ormerod, W. E. (1974). The mode of action of metronidazole in Trichomonas vaginalis and other microorganisms. Biochemical Pharmacology 23, 1421–9.CrossRefGoogle Scholar
Ireland, C. M., Clayton, L., Gutteridge, W. E., Pogson, C. I. & Gull, K. (1982). Identification and drug binding capabilities of tubulin in the nematode Ascaridia galli. Molecular and Biochemical Parasitology 6, 4553.CrossRefGoogle ScholarPubMed
Irie, Y. & Yasuraoka, K. (1982). Morphological alterations of Schistosoma japonicum associated with administration of amoscanate. Japanese Journal of Experimental Medicine 52, 139–48.Google Scholar
Jaffe, J. J., Doremus, A. M. & Meymerian, E. (1976). Activity of tubericidin against immature Fasciola hepatica in mice. Journal of Parasitology 62, 910–13.CrossRefGoogle Scholar
James, S. (1980). Thiamine uptake in isolated schizonts of Eimeria tenella and the inhibitory effects of amprolium. Parasitology 80, 313–22.Google Scholar
Joyner, L. P. (1981). The chemotherapy of protozoal infections of veterinary importance. Journal of Protozoology 28, 1719.CrossRefGoogle ScholarPubMed
Kammerer, W. S. & Miller, K. L. (1981). Echinococcus granulosus: permeability of hydatid cysts to mebendazole in mice. International Journal for Parasitology 11, 183–5.Google Scholar
Kennedy, M. W., Foley, M., Kuo, Y.-M., Kusel, J. R. & Garland, P. B. (1987). Biophysical properties of the surface lipid of parasitic nematodes. Molecular and Biochemical Parasitology 22, 233–40.Google Scholar
King, C. H., Greene, B. M. & Spagnuolo, P. J. (1983). Diethylcarbamazine citrate, an antifilarial drug, stimulates human granulocyte adherence. Antimicrobial Agents and Chemotherapy 24, 453–6.Google Scholar
Kohler, P. & Bachmann, R. (1980). The possible mode of action of mebendazole in Ascaris suum. In The Host – Invader Interplay (ed. Bossche, H. Van den), pp. 727–30. Amsterdam: Elsevier – North Holland.Google Scholar
Kohler, P. & Bachmann, R. (1981). Intestinal tubulin as possible target for the chemotherapeutic action of mebendazole in parasitic nematodes. Molecular and Biochemical Parasitology 4, 325–36.Google Scholar
Kohn, A., Lopez-Alvarez, M. L. & Katz, N. (1982). Transmission and scanning electron microscopical studies on the tegument of male Schistosoma mansoni after oxamniquine treatment. Annales de Parasitologie 57, 285–91.Google ScholarPubMed
Koontz, L. C., Jacobs, R. L., Lummis, W. L. & Miller, L. H. (1979). Plasmodium berghei: uptake of clindamycin and its metabolites by mouse erythrocytes with clindamycin-sensitive and clindamycin-resistant parasites. Experimental Parasitology 48, 206–12.Google Scholar
Kusel, J. R., Stones, L. & Tetley, L. (1980). Damage to surface membrane of Schistosoma mansoni by pristane (2, 6, 10, 14, tetramethyl pentadecane) and other hydrophobic compounds. Parasitology 80, 8394.Google Scholar
Lacey, E. & Pritchard, R. K. (1986). Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Molecular and Biochemical Parasitology 19, 171–81.CrossRefGoogle ScholarPubMed
Leitch, B. & Probert, A. J. (1984). Schistosoma haematobium: amoscanate and adult worm ultrastructure. Experimental Parasitology 58, 278–89.Google Scholar
Levine, P. P. (1939). The effect of sulfanilamide on the course of experimental avian coccidiosis. Cornell Veterinarian 29, 309–20.Google Scholar
Lippe, C. (1968). Effects of amphotericin B on thiourea permeability of phospholipid and cholesterol bilayer membranes. Journal of Molecular Biology 35, 635–7.Google Scholar
Looker, D. L., Marr, J. J. & Stotish, R. L. (1986). Modes of action of antiprotozoal agents. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 193207. New York: Plenum Press.Google Scholar
Long, P. L. & Jeffers, T. K. (1982). Studies on the stage of action of ionophorous antibiotics against Eimeria. Journal of Parasitology 68, 363–71.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1979). Chemotherapy of parasitic worms: new biochemical strategies. Science 205, 462–9.Google Scholar
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google Scholar
Matsuzawa, T. (1978). Studies on the mode of action of beclotiamine on Eimeria tenella. Parasitology 77, 235–41.Google Scholar
McCracken, R. O. & Taylor, D. D. (1983). Biochemical effects of fenbendazole on Hymenolepis diminuta in vivo. International Journal for Parasitology 13, 267–72.Google Scholar
McDougald, L. R. (1982). Chemotherapy of coccidiosis. In The Biology of the Coccidia (ed. Long, P. L.), pp. 376427. London: Edward Arnold.Google Scholar
McDougald, L. R. & Galloway, R. B. (1976). Anticoccidial drugs: effects on infectivity and survival intracellularly of Eimeria tenella sporozoites. Experimental Parasitology 40, 314–19.Google Scholar
McDougald, L. R. & Johnson, J. K. (1979). Floor pen studies on the anticoccidial efficacy of arprinocid in turkeys. Poultry Science 58, 72–5.Google Scholar
Mehlhorn, H., Becker, B., Andrews, P., Thomas, H. & Frenkel, J. K. (1981). In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. Arzneimittel Forschung 31, 544–54.Google Scholar
Mehlhorn, H., Kojima, S., Rim, H. J., Ruenwongsa, P., Andrews, P., Thomas, H. & Bunnag, B. (1983). Ultrastructural investigations on the effects of praziquantel on human trematodes from Asia: Clonorchis sinensis, Metagonimus yokogawai, Opisthorchis viverrini, Paragonimus westermani and Schistosoma japonicum. Arzneimittel Forschung 33, 91–8.Google Scholar
Mercer, J. G. (1985). Developmental hormones in parasitic helminths. Parasitology Today 1, 96100.Google Scholar
Miller, B. M., McManus, E. C., Olson, G., Schleim, K., Van Iderstine, A. A., Graham, D. W., Brown, J. E. & Rogers, E. F. (1977). Anticoccidial and tolerance studies in the chicken with two 6-amino-9- (substituted benzyl) purines. Poultry Science 56, 2039–44.Google Scholar
Morris, D. L., Taylor, D., Daniels, D. & Richards, K. S. (1987). Determination of minimum effective concentration of praziquantel in in vitro cultures of protoscoleces of Echinococcus granulosus. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 494–7.Google Scholar
Muller, M. & Lindmark, D. G. (1976). Uptake of metronidazole and its effect on viability in trichomonads and Entamoeba invadens under anaerobic and aerobic conditions. Antimicrobial Agents and Chemotherapy 9, 696700.Google Scholar
Nelson, N. F. & Saz, H. J. (1983). Hymenolepis diminuta: effects of amoscanate on energy metabolism and ultrastructure. Experimental Parasitology 56, 5569.Google Scholar
New, R. R. C., Chance, M. L., Thomas, S. C. & Peters, W. (1978). The antileishmanial activity of antimonials entrapped in liposomes. Nature, London 272, 55–6.Google Scholar
Otubanjo, O. A. (1984). Schistosoma mansoni: astiban-induced damage to tegument and male reproductive system. Experimental Parasitology 52, 161–70.Google Scholar
Pappas, P. W. (1983). Host – parasite interface. In Biology of the Eucestoda, vol. 2 (ed. Arme, C. and Pappas, P. W.), pp. 297334. London: Academic Press.Google Scholar
Pappas, P. W. & Read, C. P. (1975). Membrane transport in helminth parasites: a review. Experimental Parasitology 37, 469530.Google Scholar
Pax, R. A., Bennett, J. L. & Fetterer, R. (1978). A benzodiazepine derivative and praziquantel: effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Naunyn-Schmiedeberg's Archives of Pharmacology 304, 309–15.Google Scholar
Pax, R. A., Fetterer, R. H. & Bennett, J. L. (1979). Effects of fluoxetine and imipramine on male Schistosoma mansoni. Comparative Biochemistry and Physiology 64C, 123–7.Google Scholar
Piessens, W. F. & Baldekas, M. (1979). Diethylcarbamazine enhances antibody-mediated cellular adherence to Brugia malayi microfilariae. Nature, London 282, 845–7.Google Scholar
Pittilo, R. M., Ball, S. J., Joyner, L. P. & Norton, C. C. (1981). Ultrastructural changes in the macrogamete and early oocyst of Eimeria maxima resulting from drug treatment. Parasitology 83, 285–91.Google Scholar
Popiel, I. & Basch, P. F. (1986). Schistosoma mansoni: cholesterol uptake by paired and unpaired worms. Experimental Parasitology 61, 343–7.Google Scholar
Popiel, I. & Erasmus, D. A. (1981). Schistosoma mansoni: niridazole-induced damage to the vitelline gland. Experimental Parasitology 52, 3548.Google Scholar
Popiel, I. & Erasmus, D. A. (1982). Schistosoma mansoni: the survival and reproductive status of mature infections in mice treated with oxamniquine. Journal of Helminthology 56, 257–61.Google Scholar
Popiel, I. & Erasmus, D. A. (1984). Schistosoma mansoni: ultrastructure of adults from mice treated with oxamniquine. Experimental Parasitology 58, 254–62.Google Scholar
Pressman, B. C., Harris, E. J., Jagger, W. S. & Johnson, J. H. (1967). Antibiotic mediated transport of alkali ions across lipid barriers. Proceedings of the National Academy of Sciences, USA 58, 1949–56.CrossRefGoogle ScholarPubMed
Pritchard, R. K., Bachmann, R., Hutchinson, G. W. & Kohler, P. (1982). The effect of praziquantel on calcium in Hymenolepis diminuta. Molecular and Biochemical Parasitology 5, 297308.Google Scholar
Pritchard, R. K., Kelly, J. D. & Thomson, H. G. (1978). The effects of benzimidazole – resistance and route of administration on the uptake of fenbendazole and thiabendazole by Haemonchus contortus and Trichostrongylus colubriformis in sheep. Veterinary Parasitology 4, 243–55.Google Scholar
Rahman, M. S. & Bryant, C. (1977). Studies on regulatory metabolism in Moniezia expansa: effects of cambendazole and mebendazole. International Journal for Parasitology 7, 403–9.CrossRefGoogle Scholar
Rapson, E. B., Chilwan, A. S. & Jenkins, D. C. (1986). Acetylcholinesterase secretion – a parameter for the interpretation of in vitro anthelmintic screens. Parasitology 92, 425–30.Google Scholar
Rapson, E. B., Lee, D. L. & Watts, S. D. M. (1981). Changes in the acetylcholinesterase activity of the nematode Nippostrongylus brasiliensis following treatment with benzimidazoles in vivo. Molecular and Biochemical Parasitology 4, 915.Google Scholar
Ravdin, J. I. & Guerrant, R. L. (1982). A review of the parasite cellular mechanisms involved in the pathogenesis of amebiasis. Reviews of Infectious Diseases 4, 1186–207.CrossRefGoogle ScholarPubMed
Ravdin, J. I., Guerrant, R. L. & Sperelakis, N. (1985). Entamoeba histolytica: impedance measurements and cytotoxicity in the presence of Bepridil, Verapamil and Cytochalasin D. Experimental Parasitology 60, 6372.Google Scholar
Reisin, I. L., Rabito, C. A., Rotunno, C. A. & Cerejido, M. (1977). The permeability of the membranes of experimental secondary cysts of Echinococcus granulosus to [14C]-mebendazole. International Journal for Parasitology 7, 189–94.Google Scholar
Rew, R. S. (1978). Mode of action of common anthelmintics. Journal of Veterinary Pharmacology and Therapeutics 1, 183–98.Google Scholar
Rew, R. S & Fetterer, R. H. (1986). Mode of action of antinematodal drugs. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 321–37. New York: Plenum Press.Google Scholar
Rew, R. S., Fetterer, R. H. & Martin, T. C. (1983). Fasciola hepatica: effects of diamfenetide free amine on in vitro physiology, biochemistry, and morphology. Experimental Parasitology 55, 159–67.Google Scholar
Rew, R. S., Smith, C. & Colglazier, M. L. (1982). Glucose metabolism of Haemonchus contortus adults: effects of thiabendazole on susceptible versus resistant strain. Journal of Parasitology 68, 845–50.CrossRefGoogle ScholarPubMed
Rogan, M. T. & Threadgold, L. T. (1984). Fasciola hepatica: tegumental alterations as a consequence of lectin binding. Experimental Parasitology 57, 248–60.CrossRefGoogle ScholarPubMed
Rojas, T. & Avila, J. L. (1987). American Leishmania spp: formycin B treatment of cutaneous leishmaniasis in mice. Parasitology 94, 467–74.Google Scholar
Ruenwongsa, P., Hutadilok, N. & Yuthavong, Y. (1983). Stimulation of Ca2+ uptake in the human liver fluke Opisthorchis viverrini by praziquantel. Life Sciences 32, 2529–34.CrossRefGoogle ScholarPubMed
Saha, A. K., Mukherjee, T. & Bhaduri, A. (1986). Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Molecular and Biochemical Parasitology 19, 195200.Google Scholar
Sangster, N. C. & Schulman, M. D., Valentino, D., Cifelli, S., Lang, R. & Ostlind, D. A. (1979). A pharmacokinetic basis for the efficacy of 4-amino-6-trichloroethenyl-l, 3-benzenedisulfonamide against Fasciola hepatica in the rat. Journal of Parasitology 65, 555–61.Google Scholar
Schulman, M. D., Valentino, D., Cifelli, S. & Ostlind, D. A. (1982). Dose-dependent pharmacokinetics and efficacy of MK-401 against old, and young – mature infections of Fasciola hepatica in the rat. Journal of Parasitology 68, 603–8.Google Scholar
Seebeck, T. & Gehr, P. (1983). Trypanocidal action of neuroleptic phenothiazines in Trypanosoma brucei. Molecular and Biochemical Parasitology 9, 197208.Google Scholar
Senft, A. W. & Hillman, G. R. (1976). Hycanthone effects on schistosomes and its likely mode of action. In Biochemistry of Parasites and Host – Parasite Relationships (ed. Bossche, H. Van den), pp. 619–28. Amsterdam: Elsevier – North Holland.Google Scholar
Shaw, J. R. & Erasmus, D. A. (1977). Schistosoma mansoni: differential cell death associated with in vitro culture and treatment with astiban (Roche). Parasitology 75, 101–9.Google Scholar
Shaw, M. K. & Erasmus, D. A. (1983). Schistosoma mansoni: the effects of a subcurative dose of praziquantel on the ultrastructure of worms in vivo. Zeitschrift für Parasitenkunde 69, 7390.Google Scholar
Shaw, M. K. & Erasmus, D. A. (1987). Schistosoma mansoni: structural damage and tegumental repair after in vivo treatment with praziquantel. Parasitology 94, 243–54.Google Scholar
Sherman, I. W. (1985). Membrane structure and function of malarial parasites and the infected erythrocyte. Parasitology 91, 609–45.Google Scholar
Shumard, R. F. & Callender, M. E. (1967). Monensin, a new biologically active compound. VI. Anticoccidial activity. Antimicrobial Agents and Chemotherapy 369–77.Google Scholar
Simpson, A. J. G. & Mclaren, D. J. (1982). Schistosoma mansoni: tegumental damage as a consequence of lectin binding. Experimental Parasitology 53, 105–16.Google Scholar
Sirawaraporn, W., Panijpan, B. & Yuthavong, Y. (1982). Plasmodium berghei: uptake and distribution of chloroquine in infected mouse erythrocytes. Experimental Parasitology 54, 260–70.Google Scholar
Smith, C. K. & Galloway, R. B. (1983). Influence of monensin on cation influx and glycolysis of Eimeria tenella sporozoites in vitro. Journal of Parasitology 69, 666–70.Google Scholar
Smith, C. K., Galloway, R. B. & White, S. L. (1981). Effect of ionophores on survival, penetration and development of Eimeria tenella sporozoites in vitro. Journal of Parasitology 67, 511–16.Google Scholar
Smith, C. K. & Strout, R. G. (1979). Eimeria tenella: accumulation and retention of anticoccidial ionophores by extracellular sporozoites. Experimental Parasitology 48, 325–30.Google Scholar
Smith, C. K. & Strout, R. G. (1980). Eimeria tenella: effect of narasin, a polyether antibiotic on the ultrastructure of intracellular sporozoites. Experimental Parasitology 50, 426–36.Google Scholar
Srivastava, V. M. L., Singh, D. P., Chatterjee, R. K. & Sen, A. B. (1984). Uptake of diethylcarbamazine by microfilariae and adults of Litomosoides carinii and Dipetalonema viteae. Journal of Helminthology 58, 197–9.Google Scholar
Steck, E. A. (1981). The chemotherapy of protozoal infections of man. Journal of Protozoology 28, 1016.Google Scholar
Stephens, J. P. (1965). Some physiological effects of coccidiosis caused by Eimeria necatrix in the chicken. Journal of Parasitology 51, 331–5.Google Scholar
Subrahmanyam, D. (1987). Antifilarials and their mode of action. In Filariasis (ed. Evered, D. and Clark, S.), pp. 246–59. CIBA Foundation Symposium 127. Chichester: John Wiley.Google Scholar
Thomas, H., Andrews, P. & Mehlhorn, H. (1982). New results on the effect of praziquantel in experimental cysticercosis. Annals of Tropical Medicine and Hygiene 31, 803–10.CrossRefGoogle ScholarPubMed
Thomas, H. & Gonnert, R. (1978). Zur Wirkamskeit von Praziquantel bei der experimentellen Cysticercose und Hydatidose. Zeitschrift für Parasitenkunde 55, 165–79.Google Scholar
Thomson, J. E., Fernando, M. A. & Pasternak, J. (1979). Induction of gel-phase lipid in plasma membrane of chick intestinal cells after coccidial infection. Biochimica et Biophysica Acta 555, 472–84.Google Scholar
Thompson, R. C. A., Reynoldson, J. A. & Riddler, C. R. (1986). Praziquantel adversely affects protoscoleces of Echinococcus granulosus in vitro. Journal of Helminthology 60, 279–86.Google Scholar
Thorsell, W. & Bjorkman, N. (1966). In vitro studies on the effect of hexachlorophene and its dimethylether on the liver fluke, Fasciola hepatica L. Zeitschrift für Parasitenkunde 28, 116–24.Google Scholar
Threadgold, L. T. (1985). Fasciola hepatica: interaction of the tegument with poly-L-lysine and enzymes. Experimental Parasitology 59, 222–30.Google Scholar
Todd, J. R. & Ross, J. G. (1966). Origin of hemoglobin in the cecal contents of Fasciola hepatica. Experimental Parasitology 19, 151–4.Google Scholar
Van Den Bossche, H. (1972). Biochemical effects of the anthelmintic drug mebendazole. In Comparative Biochemistry of Parasites (ed. Bossche, H. Van den), pp. 139–47. New York: Academic Press.Google Scholar
Van Den Bossche, H. (1980 a). Peculiar targets in anthelmintic chemotherapy. Biochemical Pharmacology 29, 1981–90.Google Scholar
Van Den Bossche, H. (1980 b). Chemotherapy of hymenolepiasis. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 639–93. New York: Academic Press.Google Scholar
Van Den Bossche, H. (1986). Mode of action of anticestodal agents. In Chemotherapy of Parasitic Diseases (ed. Campbell, W. C. and Rew, R. S.), pp. 495503. New York: Plenum Press.Google Scholar
Van Den Bossche, H. & De Nollin, S. (1973). Effects of mebendazole on the absorption of low molecular weight nutrients by Ascaris suum. International Journal for Parasitology 3, 401–7.Google Scholar
Van Den Bossche, H., Thienpont, D. & Janssens, P. G. (1985). Chemotherapy of Oastrointestinal Helminths. Berlin: Springer-Verlag.Google Scholar
Van Der Horst, C. T. G. & Kouwenhoven, B. (1973). Biochemical investigation with regard to infection and immunity of Eimeria acervulina in the fowl. Zeitschrift für Parasitenkunde 42, 2338.Google Scholar
Verheyen, A. (1982). Echinococcus granulosus: the influence of mebendazole therapy on the ultrastructural morphology of the germinal layer of hydatid cysts in humans and mice. Zeitschrift für Parasitenkunde 67, 5565.Google Scholar
Verheyen, A., Borgers, M., Vanparijs, O. & Thienpont, D. (1976). The effects of mebendazole on the ultrastructure of cestodes. In Biochemistry of Parasites and Host – Parasite Relationships (ed. Bossche, H. Van den), pp. 605–18. New York: Elsevier – North Holland.Google Scholar
Verheyen, A., Vanparijs, O., Borders, M. & Thienpont, D. (1978). Scanning electron microscopic observations of Cysticercus fasciolaris (= Taenia taeniaeformis) after treatment of mice with mebendazole. Journal of Parasitology 64, 411–25.Google Scholar
Verheyen, A., Vanparijs, O., Lauwers, H. & Thienpont, D. (1980). The influence of closantel administration to sheep on the ultrastructure of the adult liver fluke Fasciola hepatica L. In The Host – Iinvader Interplay(ed. Bossche, H. Van den), pp. 705–8. Amsterdam: Elsevier – North Holland.Google Scholar
Verhoeven, H. L. E., Willemsens, G. & Van Den Bossche, H. (1976). Uptake and distribution of levamisole in Ascaris suum. In Biochemistry of Parasites and Host – Parasite Relationships (ed. Bossche, H. Van den), pp. 573–9. Amsterdam: Elsevier – North Holland.Google Scholar
Voge, M. & Bueding, E. (1980). Schistosoma mansoni: tegumental surface alterations induced by subcurative doses of the schistosomicide amoscanate. Experimental Parasitology 50, 251–9.Google Scholar
Wang, C. C. (1982). Biochemistry and physiology of coccidia. In The Biology of the Coccidia (ed. Long, P. L.), pp. 168228. London: Edward Arnold.Google Scholar
Wang, C. C. & Simashkevich, P. M. (1980). A comparative study of the biological activities of arprinocid and arprinocid-I-N-oxide. Molecular and Biochemical Parasitology 1, 335–45.Google Scholar
Wang, C. C., Simashkevich, P. M. & Fan, S. S. (1981). The mechanism of anticoccidial action of arprinocid-1-N-oxide. Journal of Parasitology 67, 137–49.Google Scholar
Wang, C. C., Simashkevich, P. M. & Stotish, R. L. (1979). Mode of anticoccidial action of arprinocid. Biochemical Pharmacology 28, 2241–8.Google Scholar
Wang, C. C., Tolma, R. L., Simashkevich, P. M. & Stotish, R. L. (1979). Arprinocid, an inhibitor of hypoxanthine – guanine transport. Biochemical Pharmacology 28, 2249–60.Google Scholar
Ward, S. M., Allen, J. M. & McKerr, G. (1986). Action of praziquantel on Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 133–42.Google Scholar
Watts, S. D. M. (1978). The effects of 1,7-bis(p-amino-phenoxy) heptane on glucose utilisation by Schistosoma mansoni. Comparative Biochemistry and Physiology 60C, 109–14.Google Scholar
Watts, S. D. M. (1986). Schistosoma mansoni: nitrothiazolines and the male tegument. Experimental Parasitology 62, 157–68.Google Scholar
Watts, S. D. M., Orpin, A. & McCormick, C. (1979). Lysosomes and tegument pathology in the chemotherapy of schistosomiasis with l,7-bis(p-aminophenoxy) heptane (153C51). Parasitology 78, 287–94.Google Scholar
Williamson, J. (1959). Drug resistance in trypanosomes: effects of metabolic inhibitors, pH and oxidation-reduction potential on normal and resistant Trypanosoma rhodesiense. British Journal of Pharmacology 14, 443–55.Google Scholar
Wolde Mussie, E., Vande Waa, J., Pax, R. A., Fetterer, R. & Bennett, J. L. (1982). Schistosoma mansoni: calcium efflux and the effects of calcium-free media on responses of the adult male musculature to praziquantel and other agents inducing contraction. Experimental Parasitology 53, 270–8.Google Scholar
Wood, P. J. & Mansour, T. E. (1986). Schistosoma mansoni: serotonin uptake and its drug inhibition. Experimental Parasitology 62, 114–19.Google Scholar
Woolhouse, N. M. & Kaye, B. (1977). Uptake of [14C]oxamniquine by Schistosoma mansoni. Parasitology 75, 111–18.Google Scholar
Xiao, S. H., Friedman, P. A., Catto, B. A. & Webster, L. T. (1984). Praziquantel-induced vesicle formation in the tegument of male Schistosoma mansoni is calcium dependent. Journal of Parasitology 70, 177–9.CrossRefGoogle ScholarPubMed
Zilberstein, D. & Dwyer, D. M. (1984). Antidepressants cause lethal disruption of membrane function in the human protozoan parasite Leishmania. Science 226, 977–9.Google Scholar