Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:10:51.035Z Has data issue: false hasContentIssue false

Individual and combined effects of cadmium and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on the humoral immune response in European eel (Anguilla anguilla) experimentally infected with larvae of Anguillicola crassus (Nematoda)

Published online by Cambridge University Press:  16 April 2004

B. SURES
Affiliation:
Zoologisches Institut I Ökologie-Parasitologie, Universität Karlsruhe, Kornblumenstrasse 13, D-76128 Karlsruhe, Germany
K. KNOPF
Affiliation:
Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abt. Binnenfischerei, Müggelseedamm 310, D-12587 Berlin, Germany

Abstract

The individual and combined effects of cadmium (Cd) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on the antibody response of fish against metazoan parasites were tested. Eels experimentally infected with the swim bladder nematode Anguillicola crassus were exposed to sublethal concentrations of Cd and PCB 126. Cd was added to the water resulting in an effective concentration of 21·7±12·8 μg/l (mean±S.D.). PCB 126 was applied orally at a dose of approximately 100 ng PCB 126 per g body weight. At the end of the experiment, 76 days post-infection (p.i.), eels were found to be infected with 2–3 worms. Immunoblot analyses revealed that the body wall of adult worms was the most suitable crude antigen, and was subsequently used for an ELISA to evaluate the immune response of A. anguilla under various conditions. A significant increase of Anguillicola-specific antibodies in the peripheral blood was first detected 61 days p.i., indicating that it was not the invasive larvae but the adult worms which elicit the antibody response. The presence of Cd in the concentrations applied did not appear to modulate the production of antibodies. In contrast, the exposure to PCB 126 resulted in a complete suppression of the antibody response. A similar effect was also found for the combined exposure of the infected eels to Cd and PCB 126. A suppressed immune response, as demonstrated here, may be the reason why hosts exposed to environmental pollution became often much more easily infected than unexposed conspecifics.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AALTONEN, T. M., JOKINEN, E. I., LAPPIVAARA, J., MARKKULA, S. E., SALO, H. M., LEPPÄNEN, H. & LAMMI, R. (2000). Effects of primary- and secondary-treated bleached kraft mill effluents on the immune system and physiological parameters of roach. Aquatic Toxicology 51, 5567.CrossRefGoogle Scholar
ANDERSON, D. E., DIXON, O. W., BODAMMER, J. E. & LIZZIO, E. F. (1989). Suppression of antibody-producing cells in rainbow trout spleen sections exposed to copper in vitro. Journal of Aquatic Animal Health 1, 5761.2.3.CO;2>CrossRefGoogle Scholar
ARKOOSH, M. R., CASILLAS, E., CLEMONS, E., KAGLEY, A. N., OLSON, R., RENO, P. & STEIN, J. E. (1998 a). Effect of pollution on fish diseases: Potential impacts on salmonid populations. Journal of Aquatic Animal Health 10, 182190.Google Scholar
ARKOOSH, M. R., CASILLAS, E., HUFFMAN, P., CLEMONS, E., EVERED, J., STEIN, J. E. & VARANASI, U. (1998 b). Increased susceptibility of juvenile chinook salmon from a contaminated estuary to Vibrio anguillarum. Transactions of the American Fisheries Society 127, 360374.Google Scholar
BARAK, N. A. E. & MASON, C. F. (1990). Mercury, cadmium and lead in eels and roach: the effects of size, season and locality on metal concentrations in flesh and liver. Science of the Total Environment 92, 249256.CrossRefGoogle Scholar
BARSE, A. M. & SECOR, D. H. (1999). An exotic nematode parasite of the American eel. Fisheries 24, 610.2.0.CO;2>CrossRefGoogle Scholar
BARTON, B. A. & IWAMA, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1, 326.CrossRefGoogle Scholar
BELPAIRE, C., DE CHARLEROY, D., THOMAS, K., VAN DAMME, P. & OLLEVIER, F. (1989). Effects of eel restocking on the distribution of the swimbladder nematode Anguillicola crassus in Flanders, Belgium. Journal of Applied Ichthyology 5, 151153.CrossRefGoogle Scholar
BOLS, N. C., BRUBACHER, J. L., GANASSIN, R. C. & LEE, L. E. J. (2001). Ecotoxicology and innate immunity in fish. Developmental and Comparative Immunology 25, 853873.CrossRefGoogle Scholar
BUCHMANN, K., PEDERSEN, L. Ø. & GLAMANN, J. (1991). Humoral immune response of European eel Anguilla anguilla to a major antigen in Anguillicola crassus (Nematoda). Diseases of Aquatic Organisms 12, 5557.Google Scholar
ELSASSER, M. S., ROBERSON, B. S. & HETRICK, F. M. (1986). Effects of metals on the chemiluminescent response of rainbow trout (Salmo gairdneri) phagocytes. Veterinary Immunology and Immunopathology 12, 243250.CrossRefGoogle Scholar
FRIES, L. T. & WILLIAMS, D. J. (1996). Occurrence of Anguillicola crassus, an exotic parasitic swim bladder nematode of eels, in the southeastern United States. Transactions of the American Fisheries Society 125, 794797.2.3.CO;2>CrossRefGoogle Scholar
GHANMI, Z., ROUABHIA, M., OTHMANE, O. & DESCHAUX, P. A. (1989). Effects of metal ions on cyprinid fish immune response: in vitro effects of Zn2+ and Mn2+ on the mitogenic response of carp pronephros lymphocytes. Ecotoxicology and Environmental Safety 17, 183189.CrossRefGoogle Scholar
GRINWIS, G. C. M., VETHAAK, A. D., WESTER, P. W. & VOS, J. G. (2000). Toxicology of environmental chemicals in the flounder (Platichthys flesus) with emphasis on the immune system: field, semi-field (mesocosm) and laboratory studies. Toxicology Letters 112113, 289301.CrossRefGoogle Scholar
HAENEN, O. L. M. & VAN BANNING, P. (1991). Experimental transmission of Anguillicola crassus (Nematoda, Dracunculoidea) larvae from infected prey fish to the eel Anguilla anguilla. Aquaculture 92, 115119.CrossRefGoogle Scholar
HAENEN, O. L. M., VAN WIJNGAARDEN, T. A. M. & BORGSTEEDE, F. H. M. (1994). An improved method for the production of infective third-stage juveniles of Anguillicola crassus. Aquaculture 123, 163165.CrossRefGoogle Scholar
HAENEN, O. L. M., VAN WIJNGAARDEN, T. A. M., VAN DER HEIJDEN, M. H. T., HÖGLUND, J., CORNELISSEN, J. B. J. W., VAN LENGOED, L. A. M. G., BORGSTEEDE, F. H. M. & VAN MUISWINKEL, W. B. (1996). Effects of experimental infections with different doses of Anguillicola crassus (Nematoda, Dracunculoidea) on European eel (Anguilla anguilla). Aquaculture 141, 4157.CrossRefGoogle Scholar
HAHN, M. E. & STEGEMANN, J. J. (1994). Regulation of cytochrome P4501A1 in teleosts: sustained induction of CYP1A1 mRNA, protein, and catalytic activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the marine fish Stenotomous chrysops. Toxicology and Applied Pharmacology 127, 187198.CrossRefGoogle Scholar
HOLSAPPLE, M. P., SNYDER, N. K., WOOD, S. C. & MORRIS, D. L. (1991). A review of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immuno-competence: 1991 update. Toxicology 69, 219255.CrossRefGoogle Scholar
HÖGLUND, J. & PILSTRÖM, L. (1995). Mechanical isolation and characterization of antigens from adult Anguillicola crassus. Fish and Shellfish Immunology 5, 5160.CrossRefGoogle Scholar
HÖGLUND, J., ANDERSSON, J., WICKSTRÖM, H. & REIZENSTEIN, M. (1992). The distribution of Anguillicola in Sweden and its association with thermal discharge areas. Irish Fisheries Investigations 36, 143150.Google Scholar
HOOLE, D. (1997). The effects of pollutants on the immune response of fish: implications for helminth parasites. Parassitologia 39, 219225.Google Scholar
KAFAFI, S. A., AFEEFY, H. Y., ALI, A. H., SAID, H. K. & KAFAFI, G. (1993). Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor. Environmental Health Perspectives 101, 422428.CrossRefGoogle Scholar
KELLY, C. E., KENNEDY, C. R. & BROWN, J. A. (2000). Physiological status of wild European eels (Anguilla anguilla) infected with the parasitic nematode Anguillicola crassus. Parasitology 120, 195202.CrossRefGoogle Scholar
KENNEDY, C. & FITCH, D. J. (1990). Colonization, larval survival and epidemiology of the nematode Anguillicola crassus, parasitic in the eel, Anguilla anguilla, in Britain. Journal of Fish Biology 36, 117131.CrossRefGoogle Scholar
KIRK, R. S., LEWIS, J. W. & KENNEDY, C. R. (2000 a). Survival and transmission of Anguillicola crassus Kuwahara, Niimi & Itagaki, 1974 (Nematoda) in seawater eels. Parasitology 120, 289295.Google Scholar
KIRK, R. S., KENNEDY, C. R. & LEWIS, J. W. (2000 b). Effect of salinity on hatching, survival and infectivity of Anguillicola crassus (Nematoda: Dracunculoidea) larvae. Diseases of Aquatic Organisms 40, 211218.Google Scholar
KNOPF, K. (1999). Untersuchungen zur Immunantwort des Europäischen Aals (Anguilla anguilla) auf den Schwimmblasen-Nematoden Anguillicola crassus. Ph.D. thesis. University of Karlsruhe.
KNOPF, K., NASER, K., VAN DER HEIJDEN, M. H. T. & TARASCHEWSKI, H. (2000 a). Development of the humoral immune-response in European eel (Anguilla anguilla) experimentally infected with Anguillicola crassus. Diseases of Aquatic Organisms 42, 6169.Google Scholar
KNOPF, K., NASER, K., VAN DER HEIJDEN, M. H. T. & TARASCHEWSKI, H. (2000 b). Evaluation of an ELISA and immunoblotting for studying the humoral immune response in Anguillicola crassus infected European eel Anguilla anguilla. Diseases of Aquatic Organisms 43, 3948.Google Scholar
KNOPF, K., WÜRTZ, J., SURES, B. & TARASCHEWSKI, H. (1998). Impact of low water temperature on the development of Anguillicola crassus in the final host Anguilla anguilla. Diseases of Aquatic Organisms 33, 143149.CrossRefGoogle Scholar
LAFFERTY, K. D. (1997). Environmental parasitology: What can parasites tell us about human impacts on the environment? Parasitology Today 13, 251255.Google Scholar
LEMAIRE-GONY, S., LEMAIRE, P. & PULSFORD, A. L. (1995). Effects of cadmium and benzo(a)pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquatic Toxicology 31, 297313.CrossRefGoogle Scholar
MACKENZIE, K., WILLIAMS, H. H., WILLIAMS, B., McVICAR, A. H. & SIDDALL, R. (1995). Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Advances in Parasitology 35, 85144.CrossRefGoogle Scholar
MAAMOURI, F., GARGOURI, L., OULD DADDAH, M. & BOUIX, G. (1999). Occurrence of Anguillicola crassus (Nematoda, Anguillicolidae) in the Ichkeul lake (Northern Tunisia). Bulletin of the European Association of Fish Pathologists 19, 1719.Google Scholar
MERIAN, E. (1991). Metals and their Compounds in Environment and Life. Occurence, Analysis and Biological Relevance. Verlag Chemie Weinheim, New York.
MOLNÁR, K. (1994). Formation of parasitic nodules in the swimbladder and intestinal walls of the eel Anguilla anguilla due to infections with larval stages of Anguillicola crassus. Diseases of Aquatic Organisms 20, 163170.Google Scholar
MOLNÁR, K., BASKA, F., CSABA, G., GLÁVITS, R. & SZÉKELY, C. (1993). Pathological and histopathological studies of the swimbladder of eels Anguilla anguilla infected by Anguillicola crassus (Nematoda: Dracunculoidea). Diseases of Aquatic Organisms 15, 4150.CrossRefGoogle Scholar
MOLNÁR, K., SZAKOLCZAI, J. & VETÉSI, F. (1995). Histological changes in the swimbladder wall of eels due to abnormal location of adult and second stage larvae of Anguillicola crassus. Acta Veterinaria Hungarica 43, 125137.Google Scholar
MORAVEC, F. (1992). Spreading of the nematode Anguillicola crassus (Dracunculoidea) among eel populations in Europe. Folia Parasitologica 39, 247248.Google Scholar
MORAVEC, F. (1996). Aquatic invertebrates (snails) as new paratenic hosts of Anguillicola crassus (Nematoda: Dracunculoidea) and the role of paratenic hosts in the life cycle of this parasite. Diseases of Aquatic Organisms 27, 237239.CrossRefGoogle Scholar
MORAVEC, F. & KONECNY, R. (1994). Some new data on the intermediate and paratenic hosts of the nematode Anguillicola crassus Kuwahara, Niimi & Itagaki, 1974 (Dracunculoidea), a swimbladder parasite of eels. Folia Parasitologica 41, 6570.Google Scholar
MORAVEC, F. & šKORIKOVÁ, B. (1998). Amphibians and larvae of aquatic insects as new paratenic hosts of Anguillicola crassus (Nematoda: Dracunculoidea), a swimbladder parasite of eels. Diseases of Aquatic Organisms 34, 217222.CrossRefGoogle Scholar
MORAVEC, F. & TARASCHEWSKI, H. (1988). Revision of the genus Anguillicola Yamaguti 1935 (Nematoda: Anguillicolidae) of the swimbladder of eels, including descriptions of two new species, A. novaezelandiae sp. n. and A. papernai sp. n. Folia Parasitologica 35, 125146.Google Scholar
MURAD, A. & HOUSTON, A. H. (1988). Leucocytes and leucopoitic capacity in goldfish, Carassius auratus exposed to sublethal levels of cadmium. Aquatic Toxicology 13, 141154.CrossRefGoogle Scholar
NAGASAWA, K., KIM, Y. G. & HIROSE, H. (1994). Anguillicola crassus and Anguillicola globiceps (Nematoda: Dracunculoidea) parasitic in the swimbladder of eels (Anguilla japonica and A. anguilla) in East Asia. Folia Parasitologica 41, 127137.Google Scholar
NIELSEN, M. E. & BUCHMANN, K. (1997). Glutathione-s-transferase is an important antigen in the eel nematode Anguillicola crassus. Journal of Helminthology 71, 319324.CrossRefGoogle Scholar
O'NEILL, J. G. (1981). Effects of intraperitoneal lead and cadmium on the humoral immune response of Salmo trutta. Bulletin of Environmental Contamination and Toxicology 27, 4248.CrossRefGoogle Scholar
QUABIUS, E. S., NOLAN, D. T., SEGNER, H. & WENDELAAR BONGA, S. E. (2002). Confinement stress and starvation modulate the induction of EROD activity after dietary exposure to PCB 126 in the Mozambique tilapia (Oreochromis mossambicus). Fish Physiology and Biochemistry 25, 109119.Google Scholar
REGALA, R. P., RICE, C. D., SCHWEDLER, T. E. & DOROCIAK, I. R. (2001). The effects of tributyltin (TBT) and 3,3′4,4′5-pentachlorobiphenyl (PCB-126) mixtures on antibody responses and phagocyte oxidative burst activity in channel catfish, Ictalurus punctatus. Archives of Environmental Contamination and Toxicology 40, 386391.Google Scholar
RICE, C. D. & SCHLENK, D. (1995). Immune function and cytochrome P4501A activity after acute exposure to 3,3′4,4′,5-Pentachlorobiphenyl (PCB 126) in channel catfish. Journal of Aquatic Animal Health 7, 195204.2.3.CO;2>CrossRefGoogle Scholar
RICE, C. D., ROSZELL, L. E., BANES, M. M. & ARNOLD, R. E. (1998). Effects of dietary PCBs and nonyl-phenol on immune function and CYP1Y activity in channel catfish, Ictalurus punctatus. Marine Environmental Research 46, 351354.CrossRefGoogle Scholar
ROBOHM, R. A. (1986). Paradoxical effects of cadmium exposure on antibacterial antibody responses in two fish species: inhibition in cunners (Tautogolabrus adspersus) and enhancement in striped bass (Morone saxatilis). Veterinary Immunology and Immunopathology 12, 251262.CrossRefGoogle Scholar
SAFE, S. (1994). Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds. Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Critical Reviews in Toxicology 21, 5188.Google Scholar
SANCHEZ-DARDON, J., VOCCIA, I., HONTELA, A., CHILMONCYK, S., DUNIER, M., BOERMANS, H., BLAKELY, B. & FOURNIER, M. (1999). Immunomodulation by heavy metals tested individually or in mixtures in rainbow trout (Oncorhynchus mykiss) exposed in vivo. Environmental Toxicology and Chemistry 18, 14921497.CrossRefGoogle Scholar
SCHULTE, S., MENGEL, K., GÄTKE, U. & FRIEDBERG, K. D. (1994). No influence of cadmium on the reproduction of specific antibodies in mice. Toxicology 93, 263268.CrossRefGoogle Scholar
SPITZBERGEN, J. M., SCHAT, K. A., KLEEMAN, J. M. & PETERSON, R. (1986 a). Interactions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with immune responses of rainbow trout. Veterinary Immunology and Immunopathology 12, 263280.Google Scholar
SPITZBERGEN, J. M., SCHAT, K. A., KLEEMAN, J. M. & PETERSON, R. (1986 b). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Aroclor 1254 on the resistance of rainbow trout, Salmo gairdneri T, to infectious haematopoietic necrosis virus. Journal of Fish Diseases 11, 7383.Google Scholar
SURES, B. (2001). The use of parasites as bioindicators in aquatic ecosystems: a review. Aquatic Ecology 35, 245255.CrossRefGoogle Scholar
SURES, B. (2002). Charakterisierung aquatischer Wirt-Parasit-Interaktionen aus ökologischer und (öko-)toxikologischer Sicht. Habilitationsschrift, Universität Karlsruhe.
SURES, B. (2003). Accumulation of heavy metals by intestinal helminths in fish: facts, appraisal and perspectives. Parasitology 126 (Suppl.), S53S60.Google Scholar
SURES, B. & STREIT, B. (2001). Eel parasite diversity and intermediate host abundance in the River Rhine, Germany. Parasitology 123, 185191.CrossRefGoogle Scholar
SURES, B., KNOPF, K. & KLOAS, W. (2001). Induction of stress by the swimbladder nematode Anguillicola crassus in European eels, Anguilla anguilla, after repeated experimental infection. Parasitology 123, 179184.CrossRefGoogle Scholar
SURES, B., KNOPF, K. & TARASCHEWSKI, H. (1999 b). Development of Anguillicola crassus (Dracunculoidea, Anguillicolidae) in experimentally infected Balearic congers Ariosoma balearicum (Anguilloidea, Congridae). Diseases of Aquatic Organisms 39, 7578.Google Scholar
SURES, B., TARASCHEWSKI, H. & JACKWERTH, E. (1994). Lead content of Paratenuisentis ambiguus (Acanthocephala), Anguillicola crassus (Nematodes) and their host Anguilla anguilla. Diseases of Aquatic Organisms 19, 105107.CrossRefGoogle Scholar
SURES, B., KNOPF, K., WÜRTZ, J. & HIRT, J. (1999 a). Richness and diversity of parasite communities in European eels Anguilla anguilla of the River Rhine, Germany, with special reference to helminth parasites. Parasitology 119, 323330.Google Scholar
SZÉKELY, C. (1994). Paratenic hosts for the parasitic nematode Anguillicola crassus in Lake Balaton, Hungary. Diseases of Aquatic Organisms 18, 1120.CrossRefGoogle Scholar
SZÉKELY, C. (1995). Dynamics of Anguillicola crassus (Nematoda: Dracunculoidea) larval infection in paratenic host fishes of Lake Balaton, Hungary. Acta Veterinaria Hungarica 43, 401422.Google Scholar
SZÉKELY, C. (1996). Experimental studies on the infectivity of Anguillicola crassus third stage larvae (Nematoda) from paratenic hosts. Folia Parasitologica 43, 305311.Google Scholar
TARASCHEWSKI, H., MORAVEC, F., LAMAH, T. & ANDERS, K. (1987). Distribution and morphology of two helminths recently introduced into European eel populations: Anguillicola crassus (Nematoda, Dracunculoidea) and Paratenuisentis ambiguus (Acanthocephala, Tenuisentidae). Diseases of Aquatic Organisms 3, 167176.CrossRefGoogle Scholar
TESCH, F. W. (1999). Der Aal. Blackwell Wissenschafts-Verlag, Berlin, Wien.
THOMAS, K. & OLLEVIER, F. (1992). Paratenic hosts of the swimbladder nematode Anguillicola crassus. Diseases of Aquatic Organisms 13, 165174.CrossRefGoogle Scholar
THUVANDER, A. (1989). Cadmium exposure of rainbow trout, Salmo gairdneri Richardson: effects on immune functions. Journal of Fish Biology 35, 521529.CrossRefGoogle Scholar
VAN BANNING, P. & HAENEN, O. L. M. (1990). Effects of the swimbladder nematode Anguillicola crassus in wild and farmed eel, Anguilla anguilla. In Pathology in Marine Science. Proceedings of the 3rd International Colloquium on Pathology in Marine Aquaculture, Gloucester Point, Virginia, 2–6 October 1988 (ed. Perkins, F. O. & Cheng, T. C.), pp. S317S330. Academic Press Inc., New York.CrossRef
VAN DER HEIJDEN, M. H. T., ROOIJAKKERS, J. B. M. A., BOOMS, G. H. R., ROMBOUT, J. H. W. M. & BOON, J. H. (1995). Production, characterization and applicability of monoclonal antibodies to European eel (Anguilla anguilla L., 1758) immunoglobulin. Veterinary Immunology and Immunopathology 45, 151164.CrossRefGoogle Scholar
VAN LOVEREN, H., ROSS, P. S., OSTERHAUS, A. D. M. E. & VOS, J. G. (2000). Contaminant-induced immunosuppression and mass mortalities among harbor seals. Toxicology Letters 112–113, 319324.CrossRefGoogle Scholar
WAKELIN, D. (1996). Immunology and genetics of zoonotic infections involving parasites. Comparative Immunology and Microbiology 4, 255265.CrossRefGoogle Scholar
WENDELAAR BONGA, S. E. (1997). The stress response in fish. Physiological Reviews 77, 591625.CrossRefGoogle Scholar
WEYTS, F. A. A., COHEN, N., FLIK, G. & VERBURG-VAN KEMENADE, B. M. L. (1999). Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish and Shellfish Immunology 9, 120.CrossRefGoogle Scholar
WÜRTZ, J. & TARASCHEWSKI, H. (2000). Histopathological changes in the swimbladder wall of the European eel Anguilla anguilla due to infections with Anguillicola crassus. Diseases of Aquatic Organisms 39, 121134.CrossRefGoogle Scholar
WÜRTZ, J., TARASCHEWSKI, H. & PELSTER, B. (1996). Changes in gas composition in the swimbladder of the European eel (Anguilla anguilla) infected with Anguillicola crassus (Nematoda). Parasitology 112, 233238.CrossRefGoogle Scholar
ZELIKOFF, J. T. (1993). Metal pollution induced immunomodulation in fish. Annual Reviews on Fish Disease 2, 305325.CrossRefGoogle Scholar
ZELIKOFF, J. T. (1998). Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology 129, 6371.Google Scholar