Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T00:02:29.209Z Has data issue: false hasContentIssue false

Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines

Published online by Cambridge University Press:  08 August 2011

M. OUAKAD
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
M. VANAERSCHOT
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium Laboratory for Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
S. RIJAL
Affiliation:
Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
S. SUNDAR
Affiliation:
Banaras Hindu University, Varanasi, India
N. SPEYBROECK
Affiliation:
Institute of Health and Society, Université Catholique de Louvain, Belgium
L. KESTENS
Affiliation:
Unit of Immunology, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
L. BOEL
Affiliation:
Unit of Immunology, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
S. DE DONCKER
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
I. MAES
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
S. DECUYPERE
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
J.-C. DUJARDIN*
Affiliation:
Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium Laboratory for Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
*
*Corresponding author: Unit of Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Nationalestraat, 155, B-2000 Belgium. Tel: 00 32 3 2476358. Fax: 00 32 3 2476359. E-mail: [email protected]

Summary

Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. Z., Kuhls, K., Schweynoch, C., Sundar, S., Rijal, S., Shamsuzzaman, A. K., Raju, B. V., Salotra, P., Dujardin, J. C. and Schönian, G. (2009). Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infection Genetics and Evolution 9, 2431. doi: 10.1016/j.meegid.2008.09.005CrossRefGoogle ScholarPubMed
Alcolea, P. J., Alonso, A., Gómez, M. J., Moreno, I., Domínguez, M., Parro, V. and Larraga, V. (2010). Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. International Journal for Parasitology 40, 14971516. doi: 10.1016/j.ijpara.2010.05.013CrossRefGoogle ScholarPubMed
Andersson, D. I. and Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Review Microbiology 8, 260271. doi: 10.1038/nrmicro2319CrossRefGoogle ScholarPubMed
Borrell, S. and Gagneux, S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease 13, 14561466.Google ScholarPubMed
Cardoen, S., Van Huffel, X., Berkvens, D., Quoilin, S., Ducoffre, G., Saegerman, C., Speybroeck, N., Imberechts, H., Herman, L., Ducatelle, R. and Dierick, K. (2009). Evidence-Based semiquantitative methodology for prioritization of foodborne zoonoses. Foodborne Pathogens and Disease 6, 10831096. doi: 10.1089/fpd.2009.0291CrossRefGoogle ScholarPubMed
Carter, K. C., Hutchison, S., Boitelle, A., Murray, H. W., Sundar, S. and Mullen, A. B. (2005). Sodium stibogluconate resistance in Leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy. Parasitology 131, 747757. doi: 10.1017/S0031182005008486CrossRefGoogle ScholarPubMed
Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J. and Boelaert, M. (2007). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology 5, 873882. doi: 10.1038/nrmicro1748CrossRefGoogle ScholarPubMed
da Luz, R. I., Vermeersch, M., Dujardin, J. C., Cos, P. and Maes, L. (2009). In vitro sensitivity testing of Leishmania clinical field isolates: preconditioning of promastigotes enhances infectivity for macrophage host cells. Antimicrobial Agents Chemotherapy 53, 51975203. doi: 10.1128/AAC.00866-09CrossRefGoogle ScholarPubMed
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005). Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621. doi: 10.1128/AAC.49.11.4616-4621.2005CrossRefGoogle ScholarPubMed
Decuypere, S., Vanaerschot, M., Rijal, S., Yardley, V., Maes, L., de Doncker, S., Chappuis, F. and Dujardin, J. C. (2008). Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation. Parasitology 135, 183194. doi: 10.1017/S0031182007003782CrossRefGoogle ScholarPubMed
Desjeux, P. (2004). Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases 27, 305318. doi: 10.1016/j.cimid.2004.03.004CrossRefGoogle ScholarPubMed
Frézard, F., Demicheli, C. and Ribeiro, R. R. (2009). Pentavalent antimonials: new perspectives for old drugs. Molecules 14, 23172336. doi: 10.3390/molecules14072317CrossRefGoogle ScholarPubMed
Gamboa, D., Torres, K., De Doncker, S., Zimic, M., Arevalo, J., Dujardin, J. C. (2008). Evaluation of an in vitro and in vivo model for experimental infection with Leishmania (Viannia) braziliensis and L. (V.) peruviana. Parasitology 135, 319326. doi: 10.1017/S0031182007003848CrossRefGoogle Scholar
Haldar, A. K., Yadav, V., Singhal, E., Bisht, K. K., Singh, A., Bhaumik, S., Basu, R., Sen, P. and Roy, S. (2010). Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation. PLoS Pathogens 6, e1000907. doi: 10.1371/journal.ppat.1000907CrossRefGoogle Scholar
Hastings, I. M. and Donnelly, M. J. (2005). The impact of antimalarial drug resistance mutations on parasite fitness, and its implications for the evolution of resistance. Drug Resistance Updates 8, 4350. doi: 10.1016/j.drup.2005.03.003CrossRefGoogle ScholarPubMed
Havelaar, A. H., van Rosse, F., Bucura, C., Toetenel, M. A., Haagsma, J. A., Kurowicka, D., Heesterbeek, J. H., Speybroeck, N., Langelaar, M. F., van der Giessen, J. W., Cooke, R. M. and Braks, M. A. (2010). Prioritizing emerging zoonoses in the Netherlands. PLoS ONE 5, e13965. doi: 10.1371/journal.pone.0013965CrossRefGoogle ScholarPubMed
Holzmuller, P., Sereno, D. and Lemesre, J. L. (2005). Lower nitric oxide susceptibility of trivalent antimony-resistant amastigotes of Leishmania infantum. Antimicrobial Agents and Chemotherapy 49, 44064409. doi: 10.1128/AAC.49.10.4406-4409.2005CrossRefGoogle ScholarPubMed
Knuepfer, E., Stierhof, Y. D., McKean, P. G. and Smith, D. F. (2001). Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. The Biochemical Journal 356, 335344.CrossRefGoogle ScholarPubMed
Martínez-Calvillo, S., Vizuet-de-Rueda, J. C., Florencio-Martínez, L. E., Manning-Cela, R. G. and Figueroa-Angulo, E. E. (2010). Gene expression in trypanosomatid parasites. Journal of Biomedicine and Biotechnology 525241. Epub. doi: 10.1155/2010/525241Google ScholarPubMed
Mikus, J. and Steverding, D. (2000). A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitology International 48, 265269.CrossRefGoogle ScholarPubMed
Mookerjee Basu, J., Mookerjee, A., Sen, P., Bhaumik, S., Sen, P., Banerjee, S., Naskar, K., Choudhuri, S. K., Saha, B., Raha, S. and Roy, S. (2006). Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrobial Agents and Chemotherapy 50, 17881797. doi: 10.1128/AAC.50.5.1788–1797.2006CrossRefGoogle ScholarPubMed
Natera, S., Machuca, C., Padrón-Nieves, M., Romero, A., Díaz, E. and Ponte-Sucre, A. (2007). Leishmania spp.: proficiency of drug-resistant parasites. International Journal of Antimicrobial Agents 29, 637642. doi: 10.1016/j.ijantimicag.2007.01.004CrossRefGoogle ScholarPubMed
Rijal, S., Chappuis, F., Singh, R., Bovier, P. A., Acharya, P., Karki, B. M., Das, M. L., Desjeux, P., Loutan, L. and Koirala, S. (2003). Treatment of visceral leishmaniasis in south-eastern Nepal: decreasing efficacy of sodium stibogluconate and need for a policy to limit further decline. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 350354.CrossRefGoogle ScholarPubMed
Rijal, S., Yardley, V., Chappuis, F., Decuypere, S., Khanal, B., Singh, R., Boelaert, M., De Doncker, S., Croft, S. and Dujardin, J. C. (2007). Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes and Infection 9, 529535. doi: 10.1016/j.micinf.2007.01.009CrossRefGoogle ScholarPubMed
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100103.CrossRefGoogle ScholarPubMed
Samant, M., Sahasrabuddhe, A. A., Singh, N., Gupta, S. K., Sundar, S. and Dube, A. (2007). Proteophosphoglycan is differentially expressed in sodium stibogluconate-sensitive and resistant Indian clinical isolates of Leishmania donovani. Parasitology 134, 11751184. doi: 10.1017/S0031182007002569CrossRefGoogle ScholarPubMed
Saraiva, E. M., Pinto-da-Silva, L. H., Wanderley, J. L., Bonomo, A. C., Barcinski, M. A. and Moreira, M. E. (2005). Flow cytometric assessment of Leishmania spp metacyclic differentiation: validation by morphological features and specific markers. Experimental Parasitology 110, 3947. doi: 10.1016/j.exppara.2005.01.004CrossRefGoogle ScholarPubMed
Sereno, D. and Lemesre, J. L. (1997). In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrobial Agents and Chemotherapy 41, 18981903.CrossRefGoogle ScholarPubMed
Silva, N., Camacho, N., Figarella, K. and Ponte-Sucre, A. (2004). Cell differentiation and infectivity of Leishmania mexicana are inhibited in a strain resistant to an ABC-transporter blocker. Parasitology 128, 629634.CrossRefGoogle Scholar
Speybroeck, N., Berkvens, D., Mfoukou-Ntsakala, A., Aerts, M., Hens, N., Van Huylenbroeck, G. and Thys, E. (2004). Classification trees versus multinomial models in the analysis of urban farming systems in Central Africa. Agricultural Systems 80, 133149.CrossRefGoogle Scholar
Sundar, S. (2001). Drug resistance in Indian visceral leishmaniasis. Tropical Medicine & International Health 6, 849854.CrossRefGoogle ScholarPubMed
Thakur, C. P., Meenakshi Thakur, A. K. and Thakur, S. (2009). Newer strategies for the kala-azar elimination programme in India. The Indian Journal of Medical Research 129, 102104.Google ScholarPubMed
Thakur, C. P., Mitra, D. K. and Narayan, S. (2003). Skewing of cytokine profiles towards T helper cell type 2 response in visceral leishmaniasis patients unresponsive to sodium antimony gluconate. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 409412.CrossRefGoogle ScholarPubMed
t'Kindt, R., Scheltema, R. A., Jankevics, A., Brunker, K., Rijal, S., Dujardin, J. C., Breitling, R., Watson, D. G., Coombs, G. H. and Decuypere, S. (2010). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases 4, e904. doi: 10.1371/journal.pntd.0000904CrossRefGoogle ScholarPubMed
Uliana, S. R., Goyal, N., Freymüller, E. and Smith, D. F. (1999). Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Experimental Parasitology 92, 183191. doi: 10.1006/expr.1999.4410CrossRefGoogle ScholarPubMed
Vanaerschot, M., Maes, I., Ouakad, M., Adaui, V., Maes, L., De Doncker, S., Rijal, S., Chappuis, F., Dujardin, J. C. and Decuypere, S. (2010). Linking in vitro and in vivo survival of clinical Leishmania donovani strains. PLoS One 5, e12211. doi: 10.1371/journal.pone.0012211CrossRefGoogle ScholarPubMed
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, RESEARCH0034.CrossRefGoogle ScholarPubMed
Walliker, D., Hunt, P. and Babiker, H. (2005). Fitness of drug-resistant malaria parasites. Acta Tropica 94, 251259. doi: 10.1016/j.actatropica.2005.04.005CrossRefGoogle ScholarPubMed
Wanderley, J. L., Pinto da Silva, L. H., Deolindo, P., Soong, L., Borges, V. M., Prates, D. B., de Souza, A. P., Barral, A., Balanco, J. M., do Nascimento, M. T., Saraiva, E. M. and Barcinski, M. A. (2009). Cooperation between apoptotic and viable metacyclics enhances the pathogenesis of Leishmaniasis. PLoS One 4, e5733. doi: 10.1371/journal.pone.0005733CrossRefGoogle ScholarPubMed
Yardley, V., Ortuno, N., Llanos-Cuentas, A., Chappuis, F., Doncker, S. D., Ramirez, L., Croft, S., Arevalo, J., Adaui, V., Bermudez, H., Decuypere, S. and Dujardin, J. C. (2006). American tegumentary leishmaniasis: Is antimonial treatment outcome related to parasite drug susceptibility? Journal of Infectious Diseases 194, 11681175. doi: 10.1086/507710CrossRefGoogle ScholarPubMed
Zakai, H. A., Chance, M. L. and Bates, P. A. (1998). In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116, 305309.CrossRefGoogle ScholarPubMed