Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:49:26.909Z Has data issue: false hasContentIssue false

Improved serodiagnosis of alveolar echinococcosis of humans using an in vitro-produced Echinococcus multilocularis antigen

Published online by Cambridge University Press:  19 February 2007

N. MÜLLER*
Affiliation:
Institute of Parasitology, University of Berne, Berne, Switzerland
E. FREI
Affiliation:
Institute of Parasitology, University of Berne, Berne, Switzerland
S. NUÑEZ
Affiliation:
Institute of Parasitology, University of Berne, Berne, Switzerland
B. GOTTSTEIN*
Affiliation:
Institute of Parasitology, University of Berne, Berne, Switzerland
*
*Corresponding authors: Institute of Parasitology, Länggass-Strasse 122, CH-3012 Berne, Switzerland. Tel: +41 31 6312474 or +41 31 6312418. Fax: +41 31 6312622. E-mail: [email protected] or [email protected]
*Corresponding authors: Institute of Parasitology, Länggass-Strasse 122, CH-3012 Berne, Switzerland. Tel: +41 31 6312474 or +41 31 6312418. Fax: +41 31 6312622. E-mail: [email protected] or [email protected]

Summary

Serology is an important tool for the diagnosis of alveolar echinococcosis (AE) in humans. In order to improve serodiagnostic performance, we have developed an in vitro-produced Echinococcus mulilocularis metacestode vesicle fluid (EmVF) antigen for application in an immunoblot assay. Immunoblot analysis of EmVF revealed an abundant immunoreactive band triplet of 20–22 kDa, achieving a sensitivity of 100% based on the testing of sera from 62 pre-operative and pre-treatment cases of active and inactive AE. Thus, the EmVF-immunoblotting allowed the specific detection of cases seronegative by the Em2- and/or EmII/3–10-ELISA, usually attributable to abortive, inactive cases of AE. The specificity of the EmVF-immunoblotting did not allow discrimination between AE and cystic echinococcosis (CE) but was 100% with respect to non-Echinococcus parasitic infections or cancer malignancies. Based on the findings of this study, it is recommended that the current ELISA test combination (Em2- and II/3–10-ELISA) be complemented with EmVF-immunoblotting, allowing an improved diagnosis of both clinical and subclinical forms of AE, including those associated with E. multilocularis-specific antibody reactivities not detectable by ELISA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akisu, C., Bayram Delibas, S., Yuncu, G., Aksoy, U., Ozkoc, S., Bicmen, C., Sevinc, S. and Yaldiz, S. (2005). Evaluation of IHA, ELISA and Western Blot tests in diagnosis of pulmonary cystic hidatidosis. Tuberculosis and Torax 53, 156160.Google Scholar
Brehm, K., Jensen, K., Frosch, P. and Frosch, M. (1999). Characterization of the genomic locus expressing the ERM-like protein of Echinococcus multilocularis. Molecular and Biochemical Parasitology 100, 147152.CrossRefGoogle ScholarPubMed
Brehm, K., Spiliotis, M., Zavala-Gongora, R., Konrad, C. and Frosch, M. (2006). The molecular mechanisms of larval cestode development: first steps into an unknown world. Parasitology International 55 (Suppl. 1), S15S21.CrossRefGoogle ScholarPubMed
Dai, W. J., Hemphill, A., Waldvogel, A., Ingold, K., Deplazes, P., Mossmann, H. and Gottstein, B. (2001). Major carbohydrate antigen of Echinococcus multilocularis induces an immunoglobulin G response independent of alphabeta+ CD4+ T cells. Infection and Immunity 69, 60746083.CrossRefGoogle ScholarPubMed
Doiz, O., Benito, R., Sbihi, Y., Osuna, A., Clavel, A. and Gomez-Lus, R. (2001). Western blot applied to the diagnosis and post-treatment monitoring of human hydatidosis. Diagnostic Microbiology and Infectious Diseases 41, 139142.CrossRefGoogle Scholar
Felleisen, R. and Gottstein, B. (1993). Echinococcus multilocularis: molecular and immunochemical characterization of diagnostic antigen II/3-10. Parasitology 107, 335342.Google Scholar
Frosch, M., Frosch, P., Pfister, T., Schaad, V. and Bitter-Suermann, D. (1991). Cloning and characterisation of an immunodominant major surface antigen of Echinococcus multilocularis. Molecular and Biochemical Parasitology 48, 121130.CrossRefGoogle ScholarPubMed
Furuya, K., Kawanaka, M., Yamano, K., Sato, N. and Honma, H. (2004). Laboratory evaluation of commercial immunoblot assay kit for serodiagnosis of Echinococcus infections using sera from patients with alveolar hydatidosis in Hokkaido. Kansenshogaku Zasshi 78, 320326.CrossRefGoogle ScholarPubMed
Gottstein, B. (1991). Echinococcus multilocularis: antigenic variance between different parasite isolates. Parasitology Research 77, 359361.CrossRefGoogle ScholarPubMed
Gottstein, B. (2004). Hydatid Disease. In Infectious Diseases (ed. Armstrong, D. and Cohen, J.), pp. 16011606. 2nd Edn, Vol. II, Mosby, London, UK.Google Scholar
Gottstein, B., Eckert, J. and Fey, H. (1983). Serological differentiation between Echinococcus granulosus and E. multilocularis infections in man. Zeitschrift für Parasitenkunde 69, 347356.CrossRefGoogle Scholar
Gottstein, B., Eckert, J., Michael, S. A. and Thompson, R. C. A. (1987). Echinococcus granulosus antigens: Immunoelectrophoretic and Western blot analysis of hydatid cyst fluids. Parasitology Research 73, 186189.Google Scholar
Gottstein, B., Jacquier, P., Bresson-Hadni, S. and Eckert, J. (1993). Improved primary immunodiagnosis of alveolar echinococcosis in humans by an enzyme-linked immunosorbent assay using the Em2plus-antigen. Journal of Clinical Microbiology 31, 373376.CrossRefGoogle ScholarPubMed
Gottstein, B. and Reichen, J. (2002). Echinococcosis/Hydatidosis. In Manson's Tropical Diseases (ed. Cook, G. C. and Zumla, A.), pp. 15611582. 21st Edn. Elsevier Science Ltd. Philadelphia, PA, USA.Google Scholar
Gottstein, B., Saucy, F., Deplazes, P., Reichen, J., Demierre, G., Zürcher, C., Busato, A. and Pugin, P. (2001). Is a high prevalence of Echinococcus multilocularis in wild and domestic animals associated with increased disease incidence in humans? Emerging Infectious Diseases 7, 408412.CrossRefGoogle ScholarPubMed
Gottstein, B., Bettens, F., Parkinson, A. J. and Wilson, F. (1996). Immunological parameters associated with susceptibility or resistance to alveolar hydatid disease in Yupiks/Inupiats. Arctic Medical Research 55, 1419.Google Scholar
Hemmings, L. and McManus, D. P. (1991). The diagnostic value and molecular characterisation of an Echinococcus multilocularis antigen gene clone. Molecular and Biochemical Parasitology 44, 5361.CrossRefGoogle ScholarPubMed
Hemphill, A. and Gottstein, B. (1995). Immunological and morphological studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestode. Parasitology Research 81, 605614.Google Scholar
Hemphill, A., Stettler, M., Walker, M., Siles-Lucas, M., Fink, R. and Gottstein, B. (2002). Culture of Echinococcus multilocularis metacestodes: an alternative to animal use. Trends in Parasitology 18, 445451.CrossRefGoogle ScholarPubMed
Ito, A. and Craig, P. S. (2003). Immunodiagnostic and molecular approaches for the detection of taeniid cestode infections. Trends in Parasitology 19, 377381.CrossRefGoogle ScholarPubMed
Ito, A., Ma, L., Schantz, P. M., Gottstein, B., Liu, Y. H., Chai, J. J., Abdel-Hafez, S. K., Altintas, N., Joshi, D. D., Lightowlers, M. W. and Pawlowski, Z. S. (1999). Differential serodiagnosis for cystic and alveolar echinococcosis using fractions of Echinococcus granulosus cyst fluid (antigen B) and E. multilocularis protoscolex (EM18). American Journal of Tropical Medicine and Hygiene 60, 188192.Google Scholar
Korkmaz, M., Inceboz, T., Celebi, F., Babaoglu, A. and Uner, A. (2004). Use of two sensitive and specific immunoblot markers, em70 and em90, for diagnosis of alveolar echinococcosis. Journal of Clinical Microbiology 42, 33503352.Google Scholar
Liance, M., Janin, V., Bresson-Hadni, S., Vuitton, D. A., Houin, R. and Piarroux, R. (2000). Immunodiagnosis of Echinococcus infections: confirmatory testing and species differentiation by a new commercial Western Blot. Journal of Clinical Microbiology 38, 37183721.Google Scholar
Mamuti, W., Yamasaki, H., Sako, Y., Nakao, M., Xiao, N., Nakaya, K., Sato, N., Vuitton, D. A., Piarroux, R., Lightowlers, M. W., Craig, P. S. and Ito, A. (2004). Molecular cloning, expression, and serological evaluation of an 8-kilodalton subunit of antigen B from Echinococcus multilocularis. Journal of Clinical Microbiology 42, 10821088.CrossRefGoogle ScholarPubMed
Matsumoto, J., Müller, N., Hemphill, A., Oku, Y., Kamiya, M. and Gottstein, B. (2006). 14-3-3- and II/3-10-gene expression as molecular markers to address viability and growth activity of Echinococcus multilocularis metacestode. Parasitology 132, 8394.Google Scholar
Miguez, M., Baz, A. and Nieto, A. (1996). Carbohydrates on the surface of Echinococcus granulosus protoscoleces are immunodominant in mice. Parasite Immunology 18, 559569.CrossRefGoogle ScholarPubMed
Müller, N., Gottstein, B., Vogel, M., Flury, K. and Seebeck, T. (1989). Application of a recombinant Echinococcus multilocularis antigen in an enzyme-linked immunosorbent assay for immunodiagnosis of human alveolar echinococcosis. Molecular and Biochemical Parasitology 36, 151159.Google Scholar
Müller, N., Hemphill, A., Imboden, M., Duvallet, G., Dwinger, R. H. and Seebeck, T. (1992). Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104, 111120.Google Scholar
Pfister, M., Gottstein, B., Cerny, T. and Cerny, A. (1999). Immunodiagnosis of echinococcosis in cancer patients. Clinical Microbiology and Infection 5, 693697.Google Scholar
Poretti, D., Felleisen, E., Grimm, F., Pfister, M., Teuscher, F., Zürcher, C., Reichen, R. and Gottstein, B. (1999). Differential immunodiagnosis between cystic hydatid disease and other cross-reactive pathologies. American Journal of Tropical Medicine and Hygiene 60, 193198.CrossRefGoogle ScholarPubMed
Rausch, R. L., Wilson, J. F., Schantz, P. M. and McMahon, B. J. (1987). Spontaneous death of Echinococcus multilocularis: cases diagnosed serologically (by Em2 ELISA) and clinical significance. American Journal of Tropical Medicine and Hygiene 36, 576585.Google Scholar
Romig, T., Kratzer, W., Kimmig, P., Frosch, M., Gaus, W., Flegel, W. A., Gottstein, B., Lucius, R., Beckh, K. and Kern, P. (1999). An epidemiological survey of human alveolar echinococcosis in southwestern Germany. American Journal of Tropical Medicine and Hygiene 6, 566573.Google Scholar
Sako, Y., Nakao, M., Nakaya, K., Yamasaki, H., Gottstein, B., Lightowers, M. W., Schantz, P. M. and Ito, A. (2002). Alveolar echinococcosis: characterization of diagnostic antigen Em18 and serological evaluation of recombinant Em18. Journal of Clinical Microbiology 40, 27602765.Google Scholar
Sturm, D., Menzel, J., Gottstein, B. and Kern, P. (1995). Interleukin-5 is the predominant cytokine produced by peripheral blood mononuclear cells in alveolar echinococcosis. Infection and Immunity 63, 16881697.Google Scholar
Vogel, M., Gottstein, B., Müller, N. and Seebeck, T. (1988). Production of a recombinant antigen of Echinococcus multilocularis with high immunodiagnostic sensitivity and specificity. Molecular and Biochemical Parasitology 31, 117125.Google Scholar
Xiao, N., Mamuti, W., Yamasaki, H., Sako, Y., Nakao, M., Nakaya, K., Gottstein, B., Schantz, P. M., Lightowlers, M. W., Craig, P. S. and Ito, A. (2003). Evaluation of use of recombinant Em18 and affinity-purified Em18 for serological differentiation of alveolar echinococcosis from cystic echinococcosis and other parasitic infections. Journal of Clinical Microbiology 41, 33513353.CrossRefGoogle ScholarPubMed
Zingg, W., Renner-Schneiter, E. C., Pauli-Magnus, C., Renner, E. L., van Overbeck, J., Schläpfer, E., Weber, M., Weber, R., Opravil, M., Gottstein, B., Speck, R. F.  – the Swiss HIV Cohort Study. (2004). Alveolar echinococcosis of the liver in an adult with human immunodeficiency virus type-1 infection. Infection 32, 299302.Google Scholar