Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:10:09.742Z Has data issue: false hasContentIssue false

The impact of host nutrition on gastrointestinal helminth populations

Published online by Cambridge University Press:  06 April 2009

D. A. P. Bundy
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, Prince Consort Road, London SW7 2BB
M. H. N. Golden
Affiliation:
Trace Element Research Group, Tropical Metabolism Research Unit, University of the West Indies, Kingston 7, JM

Summary

Malnutrition and helminth infection are amongst the most prevalent chronic conditions affecting human health globally. It is estimated that parasitic helminths infect more than 1 billion people, and that more than 2 million clinical cases occur each year (Peters, 1978; Walsh, 1984). Estimates of the incidence of clinical malnutrition suggest that between 5 and 8 million cases occur annually. In many parts of the developing world malnutrition and infection conjointly are the most serious health problem in children, acting as primary or more often as secondary factors in mortality (Puffer & Serrano, 1973). The impact on health is exacerbated because both conditions are chronic, are most common in growing children and, most importantly, tend to occur together in the same individuals (Pawlowski, 1984; Chandra & Newberne, 1977).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akpom, C. A. & Warren, K. S. (1975). Calorie and protein malnutrition in chronic murine schistosomiasis mansoni: effect on the parasite and the host. Journal of Infectious Disease 132, 614.CrossRefGoogle ScholarPubMed
Anderson, R. M. (1980). The dynamics and control of direct life-cycle helminth parasties. Lecture Notes in Biomathematics 39, 278322.CrossRefGoogle Scholar
Anderson, R. M. (1982). The population dynamics and control of hookworm and roundworm infections. In Population Dynamics of Infectious Diseases, (ed. Anderson, R. M.), pp. 67108. London: Chapman and Hall.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases: I. Nature London 280, 361–7.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle ScholarPubMed
Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and its Application. London: Griffin.Google Scholar
Barrett, J. (1981). Biochemistry of Parasitic Helminths. London: McMillan.CrossRefGoogle Scholar
Bartlett, M. S. (1960). The critical community size for measles in the United States. Journal of the Royal Statistical Society, Series B. 123, 3744.CrossRefGoogle Scholar
Beisel, W. R. (1982 a). Single nutrients and immunity. American Journal of Clinical Nutrition 35, 417–68.CrossRefGoogle ScholarPubMed
Beisel, W. R. (1982 b). Synergism and antagonism of parasitic diseases and malnutrition. Reviews of Infectious Diseases 4, 746–55.CrossRefGoogle ScholarPubMed
Bianco, A. E., Nwachukwu, M. A., Townson, S., Doenhoff, M. J. & Muller, L. R. (1986). Evaluation of drugs against Onchocerca microfilariae in an inbred mouse model. Tropical Medicine and Parasitology 37, 3945.Google Scholar
Boddington, M. J. & Mettrick, D. F. (1981). Production and reproduction in Hymenolepis diminuta (Platyhelminthes: Cestoda). Canadian Journal of Zoology 59, 1962–72.CrossRefGoogle Scholar
Bolin, T. D., Davis, A. E., Cummins, A. G., Duncombe, V. M. & Kelly, J. D. (1977). The effect of iron and protein deficiency on the expulsion of Nippostrongylus brasiliensis from the small intestine of the rat. Gut 18, 182–6.CrossRefGoogle ScholarPubMed
Bundy, D. A. P. (1986). Epidemiological aspects of Trichuris and trichuriasis in Caribbean communities. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 706–18.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Anderson, R. M. & Didier, J. M. (1987). Age-related changes in the prevalence and intensity of Trichuris trichiura in a St Lucian community. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 8594.CrossRefGoogle Scholar
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Didier, J. M., Anderson, R. M. & Simmons, I. (1987). Predisposition to Trichuris trichiura infection in humans. Epidemiology and Infection 98, 6571.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Thompson, D. E., Cooper, E. S., Golden, M. H. N. & Anderson, R. M. (1985). Population dynamics and chemotherapeutic control of Trichuris trichiura infection of children in Jamaica and St Lucia. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 759–64.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Thompson, D. E., Golden, M. H. N., Cooper, E. S., Anderson, R. M. & Harland, P. S. E. (1985). Population distribution of Trichuris trichiura in a community of Jamaican children. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 232–7.CrossRefGoogle Scholar
Clark, I. A., Hunt, N. M. & Cowden, W. B. (1986). Oxygen derived free radicals in the pathogenesis of parasitic disease. Advances in Parasitology (in press).CrossRefGoogle ScholarPubMed
Croll, N. A., Anderson, R. M., Gyorkos, T. W. & Ghadirian, E. (1982). The population biology and control of Ascaris lumbricoides in a rural community in Iran. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 187–97.CrossRefGoogle Scholar
Crompton, D. W. T., Keymer, A., Singhvi, A. & Nesheim, M. C. (1983). Rat dietary fructose and the intestinal distribution and growth of Moniliformis dubius (Acanthocephala). Parasitology 86, 5772.CrossRefGoogle Scholar
Crompton, D. W. T. & Nesheim, M. C. (1976). Host-parasite relationships in the alimentary tract of domestic birds. Advances in Parasitology 14, 95194.CrossRefGoogle ScholarPubMed
Crompton, D. W. T., Nesheim, M. C. & Pawlowski, Z. S. (1985). Ascariasis and its Public Health Significance. London: Taylor & Francis.Google Scholar
Dietz, K. (1982). The population dynamics of onchocerciasis. In Population Dynamics of Infectious Diseases, (ed. Anderson, R. M.), pp. 209–41. London: Chapman and Hall.CrossRefGoogle Scholar
Douvres, F. W. & Urban, J. F. (1983). Factors contributing to the in vitro development of Ascaris suum from second-stage larvae to mature adults. Journal of Parasitology 69, 549–58.CrossRefGoogle Scholar
Duncombe, V. M., Bolin, T. D., Davis, A. E. & Kelly, J. D. (1981). Delayed expulsion of the nematode Nippostrongylus brasiliensis from rats on a low protein diet: the role of a bone marrow derived component. American Journal of Clinical Nutrition 34, 400–3.CrossRefGoogle ScholarPubMed
El-Hag, H. M. A. (1983). Interaction between zinc-deficiency and Nippostrongylus brasiliensis infection in the rat. Ph.D. thesis. University of Aberdeen.Google Scholar
Elkins, D. B., Elkins, M. H. & Anderson, R. M. (1986). The epidemiology and control of intestinal helminths in the Pulicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 774–92.CrossRefGoogle Scholar
Fernandes, G., Nair, M., Onoe, K., Tanaka, T., Floyd, R. & Good, R. A. (1979). Impairment of cell mediated immune functions by dietary zinc deficiency in mice. Proceedings of the National Academy of Sciences, USA 76, 457–61.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Foster, A. O. & Cort, W. W. (1932). The relation of diet to the susceptibility of dogs to Ancylostoma caninum. American Journal of Hygiene 16, 241–65.Google Scholar
Franke, E. D. & Weinstein, P. P. (1983). Dipetalonema viteae (Nematoda: Filarioidea): culture of third-stage larvae to young adults in vitro. Science 221, 161–3.CrossRefGoogle ScholarPubMed
Franke, E. D. & Weinstein, P. P. (1984). In vitro cultivation of Dipetalonema viteae third-stage larvae: evaluation of culture media, serum and other supplements. Journal of Parasitology 70, 618–28.CrossRefGoogle ScholarPubMed
Golden, B. E. & Golden, M. H. N. (1981). Plasma zinc, rate of weight gain, and the energy cost of tissue deposition in children recovering from severe malnutrition on a cow's milk or soya protein based diet. American Journal of Clinical Nutrition 34, 892–9.CrossRefGoogle ScholarPubMed
Golden, M. H. N. (1982). Trace elements in human nutrition. Human Nutrition: Clinical Nutrition 36 C, 185202.Google ScholarPubMed
Golden, M. H. N. & Golden, B. E. (1981). Effect of zinc supplementation on the dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. American Journal of Clinical Nutrition 34, 900–8.CrossRefGoogle ScholarPubMed
Golden, M. H. N., Golden, B. E. & Bennett, F. I. (1985). Relationship of trace element deficiencies to malnutrition. In Trace Elements in Nutrition of Children, (ed. Chandra, R. K.), pp. 185207. New York: Nestlé Nutrition, Vevey/Raven Press.Google Scholar
Hairston, N. G. (1962). Population ecology and epidemiological problems. In Proceedings of the C1BA Foundation Symposium on Bilharziasis, pp. 3680. London: J. and A. Churchill.CrossRefGoogle Scholar
Harland, P. S. E. B. (1965). Tuberculin reactions in malnourished children. Lancet 1, 611–14.Google Scholar
Isliker, H. & Schurch, B. (1980). The Impact of Malnutrition on Immune Defense in Parasitic Infestation. Nestlé Foundation Publication Series. Bern: Hans Huber Publishers.Google Scholar
Jackson, A. A. & Golden, M. H. N. (1978). The human rumen. Lancet, 764–7.CrossRefGoogle ScholarPubMed
Jose, D. G. & Welch, J. S. (1970). Growth retardation, anemia and infection, with malabsorption and infestation of the bowel. The syndrome of protein-calorie malnutrition in Australian Aboriginal children. Medical Journal of Australia 1, 349–52.CrossRefGoogle ScholarPubMed
Karen, R. C. (1968). The effect of a low protein diet and a glucose and filter paper diet on the course of infection of Nippostrongylus brasiliensis. Parasitology 58, 325–39.Google Scholar
Keusch, G. T. (1982). Summary and recommendations. In The Biology of Parasitic Infections: Workshop on Interactions of Nutrition and Parasitic Diseases. Reviews of Infectious Diseases 4 (4), 901–7.CrossRefGoogle Scholar
Keymer, A. (1982). Tapeworm infections. In Population Dynamics of Infectious Diseases, (ed. Anderson, R. M.), pp. 109–38. London: Chapman and Hall.CrossRefGoogle Scholar
Keymer, A., Crompton, D. W. T. & Walters, D. E. (1983). Parasite population biology and host nutrition: dietary fructose and Moniliformis (Acanthocephala). Parasitology 87, 265–78.CrossRefGoogle ScholarPubMed
Knauft, R. F. & Warren, K. S. (1969). The effect of calorie and protein malnutrition on both the parasite and the host in acute murine schistosomiasis mansoni. Journal of Infectious Disease 120, 560–75.CrossRefGoogle Scholar
Leyton, M. K. (1968). Stochastic models in populations of helminthic parasites in the definitive host. II Sexual mating functions. Mathematical Biosciences 3, 413–19.CrossRefGoogle Scholar
MacDonald, G. (1965). The dynamics of helminth infections, with special reference to schistosomes Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 489506.CrossRefGoogle ScholarPubMed
Mauro, N. A. & Weinstein, P. P. (1979). Effects of sterols, rat haematin and coproporphyrin on the free-living stages of Nematospiroides dubius and Nippostrongylus brasiliensis. International Journal for Parasitology 9, 421–7.CrossRefGoogle Scholar
May, R. M. (1976). Models for single populations. In Theoretical Ecology: Principles and Applications (ed. May, R. M.), pp. 425. Oxford: Blackwell Scientific Publications.Google Scholar
Mettrick, D. F. & Podesta, R. B. (1974). Ecological and physiological aspects of helminth-host interactions in the mammalian gastrointestinal canal. Advances in Parasitology 12, 183278.CrossRefGoogle ScholarPubMed
Ogilvie, B. M. & De Savigny, D. (1982). In Immunology of Parasitic Infections (ed. Cohen, S. and Warren, K. S.), pp. 81102. London: Blackwell Scientific Publications.Google Scholar
Pawlowski, Z. S. (1984). Implications of parasite–nutrition interactions from a world perspective. Federation Proceedings 43, 256–60.Google ScholarPubMed
Peters, W. (1978). Medical aspects – comments and discussion. In The Relevance of Parasitology to Human Welfare Today (ed. Taylor, A. E. R. and Muller, R.). Oxford: Blackwell Scientific Publications.Google Scholar
Puffer, P. R. & Serrano, C. V. (1973). Patterns of Mortality in Childhood. Washington D.C.: Pan American Health Organisation.Google Scholar
Read, C. P. & Phifer, K. (1959). The role of carbohydrates in the biology of cestodes. VIII. Interactions between individual tapeworms of the same and different species. Experimental Parasitology 8, 4650.CrossRefGoogle Scholar
Sabah, A. A., Fletcher, C., Webbe, G. & Doenhoff, M. J. (1985). Schistosoma mansoni: reduced efficacy of chemotherapy in infected T-cell deprived mice. Experimental Parasitology 60, 348–54.CrossRefGoogle ScholarPubMed
Schad, G. A. & Anderson, R. M. (1985). Predisposition to hookworm infection in man. Science 228, 1537–40.CrossRefGoogle Scholar
Schultz, M. G. (1982). Ascariasis: nutritional implications. Reviews of Infectious Diseases 4, 815–19.CrossRefGoogle ScholarPubMed
Scott, M. E. & Lewis, J. (1986). Population dynamics of helminth parasites in wild and laboratory rodents. Mammal Review 17, 95104.CrossRefGoogle Scholar
Scrimshaw, N. S., Taylor, C. E. & Gordon, J. E. (1968). Interactions of Nutrition and Infection. WHO Monograph 57, pp. 329. Geneva: World Health Organization.Google ScholarPubMed
Slater, A. F. G. & Keymer, A. E. (1986). Epidemiology of Heligmosomoides polygyrus in mice: experiments on natural transmission. Parasitology 93, 177–87.CrossRefGoogle ScholarPubMed
Suskind, R. M. (1977). Malnutrition and the Immune Responses. New York: Raven Press.Google Scholar
Suskind, R. M. (1980). Malnutrition and the immune response. In The Impact of Malnutrition on Immune Defence in Parasitic Infestation (ed. Isliker, H. and Schurch, B.). Nestlé Foundation Publication, Series Vol. 2, Vienna: Hans Huber Publishers.Google Scholar
Wakelin, D. (1975). Genetic control of immune responses to parasites: selection for responsiveness and non-responsiveness to Trichuris muris in random-bred mice. Parasitology 71, 377–84.CrossRefGoogle ScholarPubMed
Walsh, J. A. (1984). Estimating the burden of illness in the tropics. In Tropical and Geographical Medicine (ed. Warren, K. S. and Mahmoud, A. A. F.), pp. 1073–85. New York: McGraw-Hill Book Co.Google Scholar