Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:26:14.067Z Has data issue: false hasContentIssue false

Immunocytochemical evidence for the presence of substance P-like peptide in Diphyllobothrium dendriticum

Published online by Cambridge University Press:  06 April 2009

M. K. S. Gustafsson
Affiliation:
Department of Biology, Åbo Akademi University, Artillerigatan 6, SF-20520 Åbo, Finland
D. Nässel
Affiliation:
Department of Zoology, Stockholm University, Svante Arrheniusväg 16, S-10691 Stockholm, Sweden
A. Kuusisto
Affiliation:
Centre for Biotechnology, Artillerigatan 6, SF-20520 Åbo, Finland

Summary

Substance P immunoreactivity (SP-IR) was detected in the nervous system of the gull-tapeworm Diphyllobothrium dendriticum. The distribution of the SP-IR neurons in the plerocercoid differs from that of other peptidergic and aminergic neurons in the worm. As well as occurring in the ganglionic commissure and along the two main nerve cords, SP-IR neurons are located laterally to the main nerve cords but not dorsally or ventrally. The SP-IR neurons have projections extending to the surface. Bipolar SP-IR neurons with processes to the surface also occur in the tip of the scolex. A sensory function for the SP-IR neurons is suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.Google Scholar
Cuello, A. C., Galfre, G. & Milstein, C. (1979). Detection of substance P in the central nervous system by a monoclonal antibody. Proceedings of the National Academy of Sciences, USA 76, 3532–6.CrossRefGoogle ScholarPubMed
Grimmelikhuijzen, C. J. P. (1984). Peptides in the nervous system of coelenterates. In Evolution and Tumour Pathology of the Neuroendocrine System (ed. Falkmer, S., Håkanson, R. & Sundler, F.) pp. 3958. Amsterdam: Elsevier Science Publishers.Google Scholar
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168–74.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1990). The cells of a cestode. Diphyllobothrium dendriticum as a model in cell biology. Acta Academiae Aboensis, Ser B 50, 1344.Google Scholar
Gustafsson, M. K. S. (1991). Skin the tapeworms before you stain their nervous system! A new method for whole-mount immunocytochemistry. Parasitology Research 77, 509–16.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Reuter, M. (1992). The map of neuronal signal substances in flatworms. Proceedings from the International Conference of Neurobiology, 1991,Goa, India (in the Press).Google Scholar
Gustafsson, M. K. S. & Wikgren, M. C. (1981). Activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum (Cestoda: Pseudophyllidea). Parasitology 83, 243–7.CrossRefGoogle Scholar
Gustafsson, M. K. S. & Wikgren, M. C. (1989). Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapeworm Diphyllobothrium dendriticum. Parasitology Research 75, 396400.CrossRefGoogle Scholar
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Halton, D. W., Fairweather, I., Shaw, C. & Johnston, C. F. (1990). Regulatory peptides in parasitic platyhelminths. Parasitology Today 6, 284–90.CrossRefGoogle ScholarPubMed
Helke, C. J., Krause, J. E., Mantyh, P. W., Courture, R. & Bannon, M. J. (1990). Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms. FASEB Journal 4, 1606–15.Google ScholarPubMed
Kaloustian, K. V. & Edmands, J. A. (1986). Immunocytochemical evidence for substance P-like peptide in the tissues of the earthworm Lumbricus terrestris: action on intestinal contraction. Comparative Biochemistry and Physiology 83 C, 329–33.Google Scholar
McKay, D. M., Fairweather, I., Johnston, C. F., Shaw, C. & Halton, D. W. (1991). Immunocytochemical and radioimmunometrical demonstration of serotonin- and neuropeptide-immunoreactivities in the adult rat tapeworm Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology 103, 275–89.CrossRefGoogle ScholarPubMed
ssel, D. R., Lundquist, C. T. & Brodin, E. (1992). Diversity in tachykinin-like peptides in the insect brain. Acta Biologica Hungarica (in the Press).Google Scholar
Reuter, M., Joffe, B. & Palmberg, I. (1992). Sensory receptors in the head of Stenostomum leucops II. Localization of catecholaminergic histofluorescence-ultrastructure of surface receptors. Acta Biologica Hungarica (in the Press).Google Scholar
Salò, E. & Baguñá, J. (1986). Stimulation of cellular proliferation and differentiation in the intact and regenerating planarian Dugesia (G) tigrina by the neuropeptide substance P. Journal of Experimental Zoology 237, 129–35.CrossRefGoogle ScholarPubMed
Wikgren, M. C. & Reuter, M. (1985). Neuropeptides in a microturbellarian–whole mount immunocytochemistry. Peptides 6 (Suppl. 3), 471–5.CrossRefGoogle Scholar