Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T14:03:16.033Z Has data issue: false hasContentIssue false

Immunocytochemical demonstration of peptidergic and serotoninergic components in the enteric nervous system of the roundworm, Ascaris suum (Nematoda, Ascaroidea)

Published online by Cambridge University Press:  06 April 2009

D. J. A. Brownlee
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 INN, Northern Ireland
I. Fairweather
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 INN, Northern Ireland
C. F. Johnston
Affiliation:
School of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 INN, Northern Ireland
C. Shaw
Affiliation:
School of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 INN, Northern Ireland

Summary

The localization and distribution of neuropeptides and an indoleamine (serotonin or 5-hydroxytryptamine) in the enteric nervous system (ENS) of the pig roundworm, Ascaris suum, have been determined by the application of an indirect immunofluorescence technique in conjunction with confocal scanning laser microscopy. Whole-mount preparations of pharyngeal, intestinal and rectal regions were screened with antisera to 23 vertebrate peptides, 2 invertebrate peptides and serotonin (= 5-HT). Positive immunoreactivity (IR) was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), FMRFamide, gastrin and serotonin. The only IR observed in the ENS was that evident in the nerve supply to the pharynx and rectal region; no IR was associated with any region of the intestine. The most extensive patterns of IR occurred with antisera to PYY, FMRFamide and serotonin. In the pharyngeal component of the ENS, IR was evident in the lateral and dorsal longitudinal pharyngeal nerves, pharyngeal commissures, nerve plexus, and associated nerve cells and fibres. In contrast, the distribution of IR to the PP and gastrin antisera was more restricted and displayed a lower intensity of immunostaining. The other component of the ENS, the rectal enteric system, only yielded immunostaining to FMRFamide. The possible role of neuropeptides and serotonin in the nutritional biology of nematodes is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertson, D. G. & Thomson, J. N. (1976). The pharynx of Caenorhabditis elegans. Philosophical Transactions of the Royal Society, B 275, 299325.Google ScholarPubMed
Atkinson, H. J., Isaac, R. E., Harris, P. D. & Sharpe, C. M. (1988). FMRFamide-like immunoreactivity within the nervous system of the nematodes Panagrellus redivivus, Caenorhabditis elegans and Heterodera glycines. Journal of Zoology 216, 663–71.CrossRefGoogle Scholar
Avery, L. (1993). Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. Journal of Experimental Biology 175, 283–97.CrossRefGoogle ScholarPubMed
Avery, L. & Horvitz, H. R. (1989). Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3, 473–85.CrossRefGoogle ScholarPubMed
Avery, L. & Horvitz, H. R. (1990). Effects of Starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology 253, 263–70.CrossRefGoogle ScholarPubMed
Banner, S. E. & Osborne, R. H. (1989). Modulation of 5-HT and proctolin receptors of FMRFamide in the foregut of the locust Schistocerca gregaria. Journal of Insect Physiology 35, 887–92.CrossRefGoogle Scholar
Bird, A. F. (1971). The nervous system. In The Structure of Nematodes (ed. Bird, A. F.), pp. 130–70. New York: Academic Press.CrossRefGoogle Scholar
Bone, L. W. & Bottjer, K. P. (1985). Stimulation of ingestion in Trichostrongylus colubriformis (Nematoda). Proceedings of the Helminthological Society of Washington 52, 80–4.Google Scholar
Brownlee, D. J. A., Fairweather, I., Johnston, C. F., Smart, D., Shaw, C. & Halton, D. W. (1993). Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda, Ascaroidea). Parasitology 106, 305–16.CrossRefGoogle ScholarPubMed
Brownlee, D. J. A., Fairweather, I. & Johnston, C. F. (1993). Immunocytochemical demonstration of neuropeptides in the peripheral nervous system of the roundworm, Ascaris suum (Nematoda: Ascaroidea). Parasitology Research 79, 302–8.CrossRefGoogle ScholarPubMed
Bullock, T. H. (1965). Pseudocoelomate Phyla: Acanthocephala, Rotifera, Gastrotricha, Kinorhyncha, Nematoda, Nematomorpha, and Entoprocta. In Structure and Function in the Nervous Systems of Invertebrates (ed. Bullock, T. H. & Horridge, G. A.), pp. 597629. San Francisco and London: W. H. Freeman and Company.Google Scholar
Chaudhuri, J. & Donahue, M. J. (1989). Serotonin receptors in the tissues of adult Ascaris suum. Molecular and Biochemical Parasitology 35, 191–8.CrossRefGoogle ScholarPubMed
Chaudhuri, J., Martin, R. E. & Donahue, M. J. (1988). Evidence for the absorption and synthesis of 5-hydroxytryptamine in perfused muscle and intestinal tissue and whole worms of adult Ascaris suum. Parasitology 96, 157–70.CrossRefGoogle ScholarPubMed
Chitwood, B. G. & Chitwood, M. B. (1974). The nervous system. In Introduction to Nematology (ed. Chitwood, B. G. & Chitwood, M. B.), pp. 160–74. Baltimore: University Park Press.Google Scholar
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.CrossRefGoogle Scholar
Cowden, C. & Stretton, A. O. W. (1993). AF2, an Ascaris neuropeptide: isolation, sequence and bioactivity. Peptides 14, 423–30.CrossRefGoogle ScholarPubMed
Cowden, C., Stretton, A. O. W. & Davis, R. E. (1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 1465–73.CrossRefGoogle ScholarPubMed
Croll, N. A. (1972). Behavioural activities of nematodes. Helminthological Abstracts 41A, 359–77.Google Scholar
Croll, N. A. (1975). Indolealkyamines in the coordination of nematode behavioral activities. Canadian Journal of Zoology 53, 894903.CrossRefGoogle ScholarPubMed
Davenport, T. R. B., Lee, D. L. & Isaac, R. E. (1988). Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMRFamide. Parasitology 97, 81–8.CrossRefGoogle ScholarPubMed
Deineka, D. (1908). Das Nervensystem von Ascaris. Zeitschrift für wissenschaftliche Zoologie 89, 242307.Google Scholar
Di Maggio, D. A., Chronwall, B. M., Buchanan, K. & O'Donohue, T. L. (1985). Pancreatic polypeptide immunoreactivity in rat brain is actually neuropeptide Y. Neuroscience 15, 1149–57.CrossRefGoogle ScholarPubMed
Donahue, M. J., Yacoub, N. J., Michnoff, C. A., Masaracchia, R. A. & Harris, B. G. (1981). Serotonin (5-hydroxytryptamine): a possible regulator of glycogenolysis in perfused muscle segments of Ascaris suum. Biochemical and Biophysical Research Communications 101, 112–17.CrossRefGoogle ScholarPubMed
El-Salhy, M., Grimelius, L., Emson, P. C. & Falkmer, S. (1987). Polypeptide YY- and neuropeptide Y-immunoreactive cells and nerves in the endocrine and exocrine pancreas of some vertebrates: an onto- and phylogentic study. Histochemistry Journal 119, 111–17.CrossRefGoogle Scholar
Fairweather, I. & Halton, D. W. (1991). Neuropeptides in platyhelminths. Parasitology 102, S77S92.CrossRefGoogle ScholarPubMed
Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992 a). The nervous systems of helminths as targets for drugs. Journal of Parasitology 78, 215–30.CrossRefGoogle ScholarPubMed
Geary, T. G., Price, D. A., Bowman, J. W., Winterrowd, C. A., Mackenzie, C. D., Garrison, R. D., Williams, J. F. & Friedman, A. R. (1992 b). Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 13, 209–14.CrossRefGoogle ScholarPubMed
Goh, S. L. & Davey, K. G. (1976). Selective uptake of noradrenaline, DOPA, and 5-hydroxytryptamine by the nervous system of Phocanema decipiens (Nematoda): a light autoradiographic and ultrastructural study. Tissue and Cell 8, 421–35.CrossRefGoogle ScholarPubMed
Goh, S. L. & Davey, K. G. (1985). Occurrence of noradrenaline in the central nervous system of Phocanema decipiens and its possible role in the control of ecdysis. Canadian Journal of Zoology 63, 475–9.CrossRefGoogle Scholar
Goldschmidt, R. (1910). Das Nervensystem von Ascaris lumbricoides und megalocephala. Festschrift für R Hertwigs 2, 253354.Google Scholar
Harpur, R. P. (1964). Maintenance of Ascaris lumbricoides in vitro III. Changes in the hydrostatic skeleton. Comparative Biochemistry and Physiology 13, 7185.CrossRefGoogle Scholar
Holden-Dye, L. & Walker, R. J. (1990). Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris; is this the site of anthelmintic action? Parasitology 101, 265–71.CrossRefGoogle Scholar
Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E. & Evans, P. D. (1982). Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 1012–14.CrossRefGoogle ScholarPubMed
Hutchinson, G. W. & Probert, A. J. (1972). Ascaris suum: kinetic properties, tissue specificity and ultrastructural location of cholinesterases. Experimental Parasitology 32, 109–16.CrossRefGoogle ScholarPubMed
Jennings, J. B. & Colam, J. B. (1970). Gut Structure, digestive physiology and food storage in Pontonema vulgaris (Nematoda: Enoplida). Journal of Zoology 161, 211–21.CrossRefGoogle Scholar
Johnson, C. D. & Stretton, A. O. W. (1987). GABA-immunoreactivity in inhibitory motor neurons of the nematode Ascaris. Journal of Neuroscience 7, 223–35.CrossRefGoogle ScholarPubMed
Johnston, C. F., Shaw, C., Halton, D. W. & Fairweather, I. (1990). Confocal scanning laser microscopy and helminth neuroanatomy. Parasitology Today 6, 305–8.CrossRefGoogle ScholarPubMed
Krajniak, K. G. & Greenberg, M. J. (1992). The localization of FMRFamide in the nervous and somatic tissues of Nereis virens and its effects upon the isolated esophagus. Comparative Biochemistry and Physiology 101C, 93100.Google ScholarPubMed
Krajniak, K. G., Greenberg, M. J., Price, D. A., Doble, K. E. & Lee, T. D. (1989). The identification, localization, and pharmacology of FMRFamide-related peptides and SCPB in the penis and crop of the terrestrial slug, Limax maximus. Comparative Biochemistry and Physiology 94C, 485–92.Google ScholarPubMed
Leach, L., Trudgill, D. L. & Gahan, P. B. (1987). Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode, Goodeyus ulmi. Histochemical Journal 19, 471–5.CrossRefGoogle ScholarPubMed
Lee, D. L. (1962). The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology 52, 241–60.CrossRefGoogle Scholar
Lee, D. L. & Ko, R. C. (1991). Catecholaminergic neurons in Trichinella spiralis (Nematoda). Parasitology Research 77, 269–70.CrossRefGoogle ScholarPubMed
Lehman, H. K. & Greenberg, M. J. (1987). The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa. Journal of Experimental Biology 131, 5568.CrossRefGoogle ScholarPubMed
Lent, C. M. & Dickinson, M. H. (1988). The neurobiology of feeding in leeches. Scientific American 258, 7883.CrossRefGoogle ScholarPubMed
Li, C. & Chalfie, N. (1986). FMRFamide-like immunoreactivity in C. elegans. Society of Neuroscience Abstracts 12, 246.Google Scholar
Lui, A., Bečejac, S., Krvavica, S. & Ćorić, D. (1963). On the activity and localization of cholinesterase in Ascaris suum Goetz. Veterinarski arhiv 33, 307–11.Google Scholar
Martin, R. E. & Donahue, M. J. (1989). Tissue and ultrastructural localisation of 5-hydroxytryptaniine (serotonin) in the tissues of Ascaris suum with energy dispersive X-ray spectrometry of immunoreactive structures. International Journal for Parasitology 19, 585–96.CrossRefGoogle ScholarPubMed
Martin, R. J., Pennington, A. J., Duittoz, A. H., Robertson, S. & Kusel, J. (1991). The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitology 102, 541–58.CrossRefGoogle ScholarPubMed
Mishra, S. K., Sen, R. & Ghatak, S. (1984). Ascaris lumbricoides and Ascaridia galli: biogenic amines in adults and developmental stages. Experimental Parasitology 57, 34–9.CrossRefGoogle ScholarPubMed
Phillips, J. L., Sturman, G. & West, G. B. (1975). The presence of histamine in the tissues of Ascaris suum. General Pharmacology 6, 295–7.CrossRefGoogle Scholar
Rosoff, M. L., Doble, K. E., Price, D. A. & Li, C. (1993). The flp-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis. Peptides 14, 331–8.CrossRefGoogle ScholarPubMed
Schinkmann, K. & Li, C. (1992). Localization of FMRFamide-like peptides in Caenorhabditis elegans. Journal of Comparative Neurology 316, 251–60.CrossRefGoogle ScholarPubMed
Sharpe, M. J. & Atkinson, H. J. (1980). Improved visualization of dopaminergic neurons in nematodes using the glyoxylic acid fluorescence method. Journal of Zoology 190, 273–84.CrossRefGoogle Scholar
Sithigorngul, P., Stretton, A. O. W. & Cowden, C. (1990). Neuropeptide diversity in Ascaris: an immunocytochemical study. Journal of Comparative Neurology 294, 362–76.CrossRefGoogle ScholarPubMed
Smart, D., Shaw, C., Johnston, C. F., Halton, D. W., Fairweather, I. & Buchanan, K. D. (1992). Chromatographic and immunological characterisation of immunoreactivity towards pancreatic polypeptide and neuropeptide Y in the nematode Ascaris suum. Comparative Biochemistry and Physiology 102C, 477–81.Google ScholarPubMed
Stretton, A. O. W. (1992). Chemical intercellular signalling mechanisms in the nervous system of the nematode Ascaris suum: potential sites of actions of new generations of anthelmintic drugs. In Neurotox 91. Molecular Basis of Drug and Pesticide Action (ed. Duce, I. A.), pp. 123–38. Amsterdam: Elsevier Applied Science.CrossRefGoogle Scholar
Sulston, J., Dew, M. & Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–26.CrossRefGoogle ScholarPubMed
Turner, M. J. & Schaeffer, J. M. (1989). Mode of action of ivermectin. In Ivermectin and Abamectin (ed. Campbell, W. C.), pp. 7388. New York, Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Wann, K. T. (1987). The cellular actions of the avermectins. Phytotherapy Research 1, 143–50.CrossRefGoogle Scholar
Ward, S., Thomson, N., White, J. G. & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. Journal of Comparative Neurology 160, 313–38.CrossRefGoogle ScholarPubMed
Willett, J. D. (1980). Control mechanisms in nematodes. In Nematodes and Biological Models, vol. 1, Behavioral and Developmental Models (ed. Zuckerman, B. M.), pp. 197225. New York: Academic Press.Google Scholar
Williams, J. A., Shahkolahi, A. M., Abbassi, M. & Donahue, M. J. (1992). Identification of a novel 5-HTN (Nematoda) receptor from Ascaris suum muscle. Comparative Biochemistry and Physiology 101C, 469–74.Google ScholarPubMed