Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T13:37:19.177Z Has data issue: false hasContentIssue false

Identification of potential protein partners that bind to the variant surface glycoprotein in Trypanosoma equiperdum

Published online by Cambridge University Press:  10 February 2017

LIOMARY M. CARRASQUEL
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
JOSÉ L. ESCALONA
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela Postgrado en Química, Universidad Simón Bolívar, Caracas, Venezuela
ALVARO ACOSTA-SERRANO
Affiliation:
Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
YURONG GUO
Affiliation:
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0654, USA
JOSÉ BUBIS*
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
*
*Corresponding author: Laboratorio de Química de Proteínas, Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89·000, Valle de Sartenejas, Baruta, Caracas 1081-A, Venezuela. E-mail: [email protected]

Summary

Trypanosoma equiperdum possesses a dense coat of a variant surface glycoprotein (VSG) that is used to evade the host immune response by a process known as antigenic variation. Soluble and membrane forms of the predominant VSG from the Venezuelan T. equiperdum TeAp-N/D1 strain (sVSG and mVSG, respectively) were purified to homogeneity; and antibodies against sVSG and mVSG were raised, isolated, and employed to produce anti-idiotypic antibodies that structurally mimic the VSG surface. Prospective VSG-binding partners were initially detected by far-Western blots, and then by immunoblots using the generated anti-idiotypic antibodies. Polypeptides of ~80 and 55 kDa were isolated when anti-idiotypic antibodies–Sepharose affinity matrixes were used as baits. Mass spectrometry sequencing yielded hits with various proteins from Trypanosoma brucei such as heat-shock protein 70, tryparedoxin peroxidase, VSG variants, expression site associated gene product 6, and two hypothetical proteins. In addition, a possible interaction with a protein homologous to the glutamic acid/alanine-rich protein from Trypanosoma congolense was also found. These results indicate that the corresponding orthologous gene products are candidates for VSG-interacting proteins in T. equiperdum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Sorrento Therapeutics Inc., 9380 Judicial Drive, San Diego, California 92121, USA.

References

REFERENCES

Acosta-Serrano, A., Hutchinson, C., Nakayasu, E. S., Almeida, I. C. and Carrington, M. (2007). Comparison and evolution of the surface architecture of Trypanosomatid parasites. In Trypanosomes: After the Genome (ed. Barry, D., McCulloch, R., Mottram, J. and Acosta-Serrano, A.), pp. 319337. Horizon Bioscience, UK.Google Scholar
Bayne, R. A., Kilbride, E. A., Lainson, F. A., Tetley, L. and Barry, J. D. (1993). A major surface antigen of procyclic stage Trypanosoma congolense . Molecular and Biochemical Parasitology 61, 295310.Google Scholar
Beecroft, R. P., Roditi, I. and Pearson, T. W. (1993). Identification and characterization of an acidic major surface glycoprotein from procyclic stage Trypanosoma congolense . Molecular and Biochemical Parasitology 61, 285294.Google Scholar
Bülow, R. and Overath, P. (1985). Synthesis of a hydrolase for the membrane-form variant surface glycoprotein is repressed during transformation of Trypanosoma brucei . FEBS Letters 187, 105110.Google Scholar
Bütikofer, P., Greganova, E., Liu, Y. C., Edwards, I. J., Lehane, M. J. and Acosta-Serrano, A. (2010). Lipid remodelling of glycosylphosphatidylinositol (GPI) glycoconjugates in procyclic-form trypanosomes: biosynthesis and processing of GPIs revisited. Biochemical Journal 428, 409418.Google Scholar
Camargo, R., Izquier, A., Uzcanga, G. L., Perrone, T., Acosta-Serrano, A., Carrasquel, L., Arias, L. P., Escalona, J. L., Cardozo, V. and Bubis, J. (2015). Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax . Veterinary Parasitology 207, 1733.Google Scholar
Cardoso de Almeida, M. L. and Turner, M. J. (1983). The membrane form of variant surface glycoproteins of Trypanosoma brucei . Nature 302, 349352.Google Scholar
Cully, D. F., Ip, H. S. and Cross, G. A. (1985). Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei . Cell 42, 173182.Google Scholar
De Maio, A. and Vazquez, D. (2013). Extracellular heat shock proteins: a new location, a new function. Shock 40, 239246.Google Scholar
Ferguson, M. A., Haldar, K. and Cross, G. A. (1985). Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. Journal of Biological Chemistry 260, 49634968.Google Scholar
Ferguson, M. A. J., Homans, S. W., Dwek, R. A. and Rademacher, T. W. (1988). Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239, 753759.Google Scholar
Field, M. C. and Menon, A. K. (1992). Biosynthesis of glycosylphosphatidylinositol membrane anchors. In Lipid Modification of Proteins: A Practical Approach (ed. Hooper, N. M. and Turner, A. J.), pp. 155190. IRL Press, Oxford, UK.CrossRefGoogle Scholar
Grünfelder, C. G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y. D., Boshart, M. and Overath, P. (2002). Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3, 547559.CrossRefGoogle ScholarPubMed
Harlow, E. and Lane, D. (1988). Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.Google Scholar
Hillebrand, H., Schmidt, A. and Krauth-Siegel, R. L. (2003). A second class of peroxidases linked to the trypanothione metabolism. Journal of Biological Chemistry 278, 68096815.Google Scholar
Holder, A. A. and Cross, G. A. (1981). Glycopeptides from variant surface glycoproteins of Trypanosoma brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Molecular and Biochemical Parasitology 2, 135150.Google Scholar
Horn, D. and McCulloch, R. (2010). Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Current Opinion in Microbiology 13, 700705.Google Scholar
Jackson, D. G., Owen, M. J. and Voorheis, H. P. (1985). A new method for the rapid purification of both the membrane-bound and released forms of the variant surface glycoprotein from Trypanosoma brucei . Biochemical Journal 230, 195202.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature 227, 680685.Google Scholar
Lanham, S. M. and Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521534.Google Scholar
Mayer, M. P. and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62, 670684.Google Scholar
McMahon, M., Lamont, D. J., Beattie, K. A. and Hayes, J. D. (2010). Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proceedings of the National Academy of Sciences of the United States of America 107, 1883818843.Google Scholar
Mehlert, A., Zitzmann, N., Richardson, J. M., Treumann, A. and Ferguson, M. A. J. (1998). The glycosylation of the variant surface glycoproteins and procyclic acidic repetitive proteins of Trypanosoma brucei . Molecular and Biochemical Parasitology 91, 145152.Google Scholar
Peloso, E. F., Dias, L., Queiroz, R. M., Leme, A. F., Pereira, C. N., Carnielli, C. M., Werneck, C. C., Sousa, M. V., Ricart, C. A. and Gadelha, F. R. (2016). Trypanosoma cruzi mitochondrial tryparedoxin peroxidase is located throughout the cell and its pull down provides one step towards the understanding of its mechanism of action. Biochimica et Biophysica Acta – Proteins and Proteomics 1864, 110.Google Scholar
Schell, D. and Overath, P. (1990). Purification of the membrane-form variant surface glycoprotein of Trypanosoma brucei. Journal of Chromatography A 521, 239243.Google Scholar
Schell, D., Evers, R., Preis, D., Ziegelbauer, K., Kiefer, H., Lottspeich, F., Cornelissen, A. W. and Overath, P. (1991). A transferrin-binding protein of Trypanosoma brucei is encoded by one of the genes in the variant surface glycoprotein gene expression site. The EMBO Journal 10, 10611066.Google Scholar
Schlecker, T., Schmidt, A., Dirdjaja, N., Voncken, F., Clayton, C. and Krauth-Siegel, R. L. (2005). Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei . The Journal of Biological Chemistry 280, 1438514394.CrossRefGoogle ScholarPubMed
Sege, K. and Peterson, P. A. (1978). Use of anti-idiotypic antibodies as cell-surface receptor probes. Proceedings of the National Academy of Sciences of the United States of America 75, 24432447.Google Scholar
Stevens, J. R. and Brisse, S. (2004). Systematics of trypanosomes of medical and veterinary importance. In The Trypanosomiases (ed. Maudlin, I., Holmes, P. H. and Miles, M. A.), pp. 123. CABI Publishing, CAB International, Wallingford, UK.Google Scholar
Steverding, D., Stierhof, Y. D., Chaudhri, M., Ligtenberg, M., Schell, D., Beck-Sickinger, A. G. and Overath, P. (1994). ESAG 6 and 7 products of Trypanosoma brucei form a transferring binding protein complex. European Journal of Cell Biology 64, 7887.Google Scholar
Stijlemans, B., Baral, T. N., Guilliams, M., Brys, L., Korf, J., Drennan, M., Van Den Abbeele, J., De Baetselier, P. and Magez, S. (2007). A glycosylphosphatidylinositol based treatment alleviates trypanosomiasis-associated immunopathology. The Journal of Immunology 179, 40034014.Google Scholar
Thomson, L. M., Lamont, D. J., Mehlert, A., Barry, J. D. and Ferguson, M. A. (2002). Partial structure of glutamic acid and alanine-rich protein, a major surface glycoprotein of the insect stages of Trypanosoma congolense . The Journal of Biological Chemistry 277, 4889948904.Google Scholar
Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76, 43504354.Google Scholar
Tung, A. S., Ju, S. T., Sato, S. and Nisonoff, A. (1976). Production of large amounts of antibodies in individual mice. The Journal of Immunology 116, 676681.Google Scholar
Urwyler, S., Studer, E., Renggli, C. K. and Roditi, I. (2007). A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei . Molecular Microbiology 63, 218228.Google Scholar
Uzcanga, G. L., Perrone, T., Noda, J. A., Pérez-Pazos, J., Medina, R., Hoebeke, J. and Bubis, J. (2004). Variant surface glycoprotein from Trypanosoma evansi is partially responsible for the cross-reaction between Trypanosoma evansi and Trypanosoma vivax . Biochemistry 43, 595606.Google Scholar
Uzcanga, G. L., Pérez-Rojas, Y., Camargo, R., Izquier, A., Noda, J. A., Chacín, R., Parra, N., Ron, L., Rodríguez-Hidalgo, R. and Bubis, J. (2016). Serodiagnosis of bovine trypanosomosis caused by non-tsetse transmitted Trypanosoma (Duttonella) vivax parasites using the soluble form of a Trypanozoon variant surface glycoprotein antigen. Veterinary Parasitology 218, 3142.Google Scholar
Velásquez, N. P., Camargo, R. E., Uzcanga, G. L. and Bubis, J. (2014). Partial purification of integral membrane antigenic proteins from Trypanosoma evansi that display immunological cross-reactivity with Trypanosoma vivax. Journal of Parasitology Research 2014, 965815.Google Scholar