Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T03:21:56.188Z Has data issue: false hasContentIssue false

Host specificity of Argulus coregoni (Crustacea: Branchiura) increases at maturation

Published online by Cambridge University Press:  13 July 2007

V. N. MIKHEEV*
Affiliation:
Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii prospekt, 119071 Moscow, Russia
A. F. PASTERNAK
Affiliation:
Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovskii prospekt, 117997 Moscow, Russia
E. T. VALTONEN
Affiliation:
Department of Environmental and Biological Science, University of Jyväskylä, 40351 Jyväskylä, Finland
*
*Corresponding author: Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii prospekt, 119071 Moscow, Russia. Tel: +7 495 4216378. Fax: +7 495 1245983. E-mail: [email protected]

Summary

We tested the hypothesis that host specificity in ectoparasites does not depend exclusively on the features of the host but also on surrounding habitats, using 2 fish ectoparasites, Argulus coregoni and A. foliaceus (Crustacea: Branchiura), occurring sympatrically in Finnish lakes. Although these parasites are considered to be of low specificity, we found that the larger of the 2 species, A. coregoni developed a pronounced preference for salmonid hosts at the beginning of maturation (defined by the presence of copulating specimens). Argulus foliaceus infects a much wider range of fish hosts. We showed that specialization of A. coregoni on salmonids does not necessarily result from incompatibility with other fishes, but could instead reflect higher sensitivity of oxygen depletion compared with A. foliaceus. Adult A. coregoni may meet these demands by attaching to salmonids, the typical inhabitants of well-aerated waters. Young parasites of both species showed little host specificity and attached mainly to fishes with higher body reflectivity. In host choice experiments, A. coregoni of 4–5 mm length preferred salmonids (rainbow trout) to cyprinids (roach) irrespective of the type of fish host, on which it had been previously grown in the laboratory. We suggest that such an innate ontogenetic shift in host preference maintains the major part of the parasite population on its principal host, ensuring successful reproduction within suitable habitats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, O. N. (1970). Parasites diseases of cultured fishes and methods of their prevention and treatment. In Parasitology of Fishes (ed. Dogiel, V. A., Petrushevski, G. K. and Polyanski, Y.), pp. 265298. T.F.H. Publications, Hong Kong.Google Scholar
Begon, M., Harper, J. L. and Townsend, C. R. (1990). Ecology. Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford.Google Scholar
Bouwma, P. and Hazlett, B. A. (2001). Integration of multiple predator cues by the crayfish Orconectes propinquus. Animal Behaviour 61, 771776.CrossRefGoogle Scholar
Bower-Shore, C. (1940). An investigation of the common fish louse, Argulus foliaceus (Linn.). Parasitology 32, 361371.CrossRefGoogle Scholar
Charlesworth, B. (1980). Evolution in Age-Structured Populations. Cambridge University Press, London.Google Scholar
Dogiel, V. A., Petrushevski, G. K. and Polyanski, Y. I. (1961). Parasitology of Fishes. Oliver and Boyd, Edinburgh.Google Scholar
Fryer, G. (1966). Habitat selection and gregarious behaviour in parasitic crustaceans. Crustaceana 10, 199209.CrossRefGoogle Scholar
Haas, W. (1994). Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology 109 (Suppl.), S15S29.CrossRefGoogle ScholarPubMed
Hakalahti, T. and Valtonen, E. T. (2003). Population structure and recruitment of the ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura) on a fish farm. Parasitology 126, 17.Google Scholar
Hakalahti, T., Pasternak, A. F. and Valtonen, E. T. (2004). Seasonal dynamics of egg laying and egg-laying strategy of the ectoparasite Argulus coregoni (Crustacea: Branchiura). Parasitology 128, 655660.CrossRefGoogle ScholarPubMed
Hakalahti, T., Bandilla, M. and Valtonen, E. T. (2005). Delayed transmission of a parasite is compensated by accelerated growth. Parasitology 131, 110.CrossRefGoogle ScholarPubMed
Herter, K. (1927). Reizphysiologishe Untersuchungen an der Karpfenlaus (Argulus foliaceus L.). Zeitschrift für vergleichende Physiologie 5, 283370.CrossRefGoogle Scholar
Holmes, J. C. (1979). Parasite populations and host community structure. In Host-Parasite Interfaces (ed. Nickol, B. B.), pp. 2746. Academic Press, New York.Google Scholar
Hutchinson, G. E. (1975). A Treatise on Limnology. Chemistry of Lakes. John Wiley & Sons, New York.Google Scholar
Jokela, J., Taskinen, J., Mutikainen, P. and Kopp, K. (2005). Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos 108, 156164.CrossRefGoogle Scholar
Kabata, Z. (1970). Diseases of Fishes: Book 1. Crustaceans as Enemy of fishes. T.F.H. Publications, NJ, USA.Google Scholar
Kollatsch, D. (1959). Untersuchungen über die Biologie und Ökologie der Karpfenlaus (Argulus foliaceus L.). Zoologische Beiträge 5, 136.Google Scholar
Macinnis, A. J. (1976). How parasites find hosts: Some thoughts on the inception of host-parasite integration. In Ecological Aspects of Parasitology (ed. Kennedy, C. R.), pp. 320. North-Holland Publications, Amsterdam.Google Scholar
Mikheev, V. N., Valtonen, E. T. and Rintamäki-Kinnunen, P. (1998). Host searching in Argulus foliaceus L. (Crustacea: Branchiura): the role of vision and selectivity. Parasitology 116, 425430.CrossRefGoogle ScholarPubMed
Mikheev, V. N., Mikheev, A. V., Pasternak, A. F. and Valtonen, E. T. (2000). Light-mediated host searching strategies in a fish ectoparasite Argulus foliaceus L. (Crustacea: Branchiura). Parasitology 120, 409416.CrossRefGoogle Scholar
Mikheev, V. N., Pasternak, A. F., Valtonen, E. T. and Lankinen, Y. (2001). Spatial distribution and hatching of overwintering eggs of a fish ectoparasite, Argulus coregoni (Crustacea: Branchiura). Diseases of Aquatic Organisms 46, 123128.CrossRefGoogle ScholarPubMed
Mikheev, V. N., Pasternak, A. F. and Valtonen, E. T. (2003). How do fish ectoparasites Argulus spp. (Crustacea: Branchiura) match with their hosts at the behavioural and ecological scales? Journal of General Biology (Zhurnal Obshchei Biologii) 64, 238247.Google ScholarPubMed
Mikheev, V. N., Pasternak, A. F. and Valtonen, E. T. (2004). Tuning host specificity during the ontogeny of a fish ectoparasite: behavioural responses to host-induced cues. Parasitology Research 92, 220224.CrossRefGoogle ScholarPubMed
Moore, P. A., Weissburg, M. J., Parrish, J. M., Zimmer-Faust, R. K. and Gerhardt, G. A. (1994). Spatial distribution of odors in simulated benthic boundary layer flows. Journal of Chemical Ecology 20, 255279.CrossRefGoogle ScholarPubMed
Pasternak, A. F., Mikheev, V. N. and Valtonen, E. T. (2000). Life history characteristics of Argulus foliaceus L. (Crustacea: Branchiura) populations in Central Finland. Annales Zoologicy Fennici 37, 2535.Google Scholar
Pasternak, A. F., Mikheev, V. N. and Valtonen, E. T. (2004). Growth and development of Argulus coregoni (Crustacea: Branchiura) on salmonid and cyprinid hosts. Diseases of Aquatic Organisms 58, 203207.CrossRefGoogle ScholarPubMed
Poulin, R. (1992). Determinants of host specificity in parasites of freshwater fishes. International Journal for Parasitology 22, 753758.CrossRefGoogle ScholarPubMed
Poulin, R. (1998). Evolutionary Ecology of Parasites. From Individuals to Communities. Chapman and Hall, London.Google Scholar
Poulin, R. (2005). Relative infection levels and taxonomic distances among the host species used by a parasites: insights into parasite specialization. Parasitology 130, 109115.CrossRefGoogle ScholarPubMed
Price, P. W. (1980). Evolutionary Biology of Parasites. Princeton University Press, Princeton.Google ScholarPubMed
Saarinen, M. and Taskinen, J. (2005). Long-lasting effect of stress on susceptibility of a freshwater clam to copepod parasitism. Parasitology 130, 523529.CrossRefGoogle ScholarPubMed
Shimura, S. (1983). Seasonal occurrence, sex ratio and site preference of Argulus coregoni Thorell (Crustacea: Branchiura) parasitic on cultured freshwater salmonids in Japan. Parasitology 86, 537552.CrossRefGoogle Scholar
Stammer, H. J. (1959). Beiträge zur Morphologie, Biologie und Bekämpfung der Karpfenläuse. Zeitschrift für Parsitenkunde 19, 135208.Google Scholar
Sukhdeo, M. V. K. and Sukhdeo, S. C. (1994). Optimal habitat selection by helminths within the host environment. Parasitology 109 (Suppl.) S41S54.CrossRefGoogle ScholarPubMed
Valtonen, E. T., Holmes, J. C. and Koskivaara, M. (1997). Eutrophication, pollution, and fragmentation: effects on parasite communities in roach (Rutilis rutilis) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Sciences 50, 572585.CrossRefGoogle Scholar
Varley, M. E. (1967). British Freshwater Fishes. Fishing News Books, London.Google Scholar
Webster, D. R. and Weissburg, M. J. (2001). Chemosensory guidance cues in a turbulent chemical odor plume. Limnology and Oceanography 46, 10341047.CrossRefGoogle Scholar
Wetzel, R. G. (1983). Limnology, 2nd Edn. W.B. Saunders Co., Philadelphia, USA.Google Scholar
Wheeler, A. (1969). The Fishes of the British Isles and Northwest Europe. MacMillan, London.Google Scholar