Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T01:14:01.731Z Has data issue: false hasContentIssue false

Horizontal transmission success of Nosema bombi to its adult bumble bee hosts: effects of dosage, spore source and host age

Published online by Cambridge University Press:  05 July 2007

S. T. RUTRECHT*
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
J. KLEE
Affiliation:
School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
M. J. F. BROWN
Affiliation:
Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
*
*Corresponding author: Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. Tel: +353 (0) 896 1366. Fax: +353 (0) 677 8094. E-mail: [email protected]

Summary

Parasite transmission dynamics are fundamental to explaining the evolutionary epidemiology of disease because transmission and virulence are tightly linked. Horizontal transmission of microsporidian parasites, e.g. Nosema bombi, may be influenced by numerous factors, including inoculation dose, host susceptibility and host population heterogeneity. Despite previous studies of N. bombi and its bumble bee hosts, neither the epidemiology nor impact of the parasite are as yet understood. Here we investigate the influence N. bombi spore dosage (1000 to 500 000 spores), spore source (Bombus terrestris and B. lucorum isolates) and host age (2- and 10-day-old bees) have on disease establishment and the presence of patent infections in adult bumble bees. Two-day-old bees were twice as susceptible as their 10-day-old sisters, and a 5-fold increase in dosage from 100 000 to 500 000 spores resulted in a 20-fold increase in the prevalence of patent infections. While intraspecific inoculations were 3 times more likely to result in non-patent infections there was no such effect on the development of patent infections. These results suggest that host-age and dose are likely to play a role in N. bombi's evolutionary epidemiology. The relatively low levels of horizontal transmission success are suggestive of low virulence in this system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allander, K. and Schmid-Hempel, P. (2000). Immune defence reaction in bumble-bee workers after a previous challenge and parasitic coinfection. Functional Ecology 14, 711717.CrossRefGoogle Scholar
Bailey, L. (1955). The infection of the ventriculus of the adult honey bee by Nosema apis (Zander). Parasitology 45, 8994.CrossRefGoogle ScholarPubMed
Bailey, L. (1981). Honey Bee Pathology. Academic Press, London.Google Scholar
Bailey, L. and Ball, B. V. (1991). Honey Bee Pathology, 2nd Edn. Academic Press Inc., San Diego, CA.Google Scholar
Betts, A. D. (1920). Nosema in humble bees. Bee World 1, 171.CrossRefGoogle Scholar
Bull, J. J. (1994). Virulence. Evolution 48, 14231437.Google ScholarPubMed
Bull, J. J., Molineux, I. J. and Rice, W. R. (1991). Selection of benevolence in a host parasite system. Evolution 45, 875882.Google Scholar
De Jonghe, R. (1986). Crossing experiments with Bombus terrestris terrestris (Linnaeus, 1758) and Bombus terrestris xanthopus (Kriechbaumer, 1870) and some notes on diapause and nosemose (Hymenoptera: Apoidea). Phegea 14, 1923.Google Scholar
Doums, C., Moret, Y., Benelli, E. and Schmid-Hempel, P. (2002). Senescence of immune defence in Bombus workers. Ecological Entomology 27, 138144.CrossRefGoogle Scholar
Down, R. E., Bell, H. A., Kirkbride-Smith, A. E. and Edwards, J. P. (2004). The pathogenicity of Vairimorpha necatrix (Microspora: Microsporidia) against the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and its potential use for the control of lepidopteran glasshouse pests. Pest Management Science 60, 755764.CrossRefGoogle ScholarPubMed
Dunn, A. M. and Smith, J. E. (2001). Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes and Infection 3, 381388.CrossRefGoogle ScholarPubMed
Dunn, A. M., Terry, R. S. and Smith, J. E. (2000). Transovarial transmission in the microsporidia. Advances in Parasitology 48, 56100.Google Scholar
Durrer, S. and Schmid-Hempel, P. (1994). Shared use of flowers leads to horizontal pathogen transmission. Proceedings of the Royal Society of London, B 258, 299302.Google Scholar
Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science 265, 10841086.CrossRefGoogle ScholarPubMed
Ebert, D. (1998). Experimental evolution of parasites. Science 282, 14321435.CrossRefGoogle ScholarPubMed
Ebert, D. (1999). The evolution and expression of parasite virulence. In Evolution in Health and Disease (ed. Stearns, S. C.), pp. 161172. Oxford University Press, New York.Google Scholar
Ebert, D. and Herre, E. A. (1996). The evolution of parasitic diseases. Parasitology Today 12, 96101.CrossRefGoogle ScholarPubMed
Eijnde, J. V. D. and Vette, N. (1993). Nosema infection in honeybees (Apis mellifera L.) and bumble bees (Bombus terrestris L.). Proceedings of Experimental and Applied Entomology, N. E. V. Amsterdam 4, 205208.Google Scholar
Fantham, H. B. and Porter, A. (1914). The morphology, biology and economic importance of Nosema bombi n. sp. parasitic in various humble bees (Bombus sp.). Annals of Tropical Medicine and Parasitology 8, 623638.CrossRefGoogle Scholar
Fisher, R. M. and Pomeroy, N. (1989). Incipient colony manipulation, Nosema incidence and colony productivity of the bumble bee Bombus terrestris (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 62, 581589.Google Scholar
Frank, S. A. (1996). Models of parasite virulence. The Quarterly Review of Biology 71, 3771.CrossRefGoogle ScholarPubMed
Fries, I. (1988). Infectivity and multiplication of Nosema apis Z. in the ventriculus of the honeybee. Apidologie 19, 319328.CrossRefGoogle Scholar
Gandon, S. and Michalakis, Y. (2000). Evolution of parasite virulence against qualitative or quantitative host resistance. Proceedings of the Royal Society of London, B 267, 985990.CrossRefGoogle ScholarPubMed
Ganusov, V. V., Bergstrom, C. T. and Antia, R. (2002). Within-host population dynamics and the evolution of microparasites in a heterogenous host population. Evolution 56, 213223.Google Scholar
Goldblatt, J. W. and Fell, R. D. (1987). Adult longevity of workers of the bumblebees B. fervidus, B. pennsylvanicus. Canadian Journal of Zoology 65, 23492353.CrossRefGoogle Scholar
Hassainen, M. H. (1951). The influence of Nosema apis on the larval honey-bee. Annals of Applied Biology 38, 844846.CrossRefGoogle Scholar
Hatcher, M. J., Hogg, J. C. and Dunn, A. M. (2005). Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni. International Journal for Parasitology 35, 265274.CrossRefGoogle ScholarPubMed
Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 14421445.CrossRefGoogle ScholarPubMed
Imhoof, B. and Schmid-Hempel, P. (1999). Colony success of the bumble bee, Bombus terrestris, in relation to infection by two protozoan parasites, Crithidia bombi and Nosema bombi. Insectes Sociaux 46, 233238.CrossRefGoogle Scholar
Inglis, G. D., Lawrence, A. M. and Davis, F. M. (2003). Impact of a novel species of Nosema on the southwestern corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 96, 1220.CrossRefGoogle ScholarPubMed
Klee, J., Tay, W. T. and Paxton, R. J. (2006). Sensitive and specific detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences. Journal of Invertebrate Pathology 91, 98104.CrossRefGoogle ScholarPubMed
Larsson, J. I. R. (2007). Cytological variation and pathogenicity of the bumble bee parasite Nosema bombi (Microspora, Nosematidae). Journal of Invertebrate Pathology 94, 111.CrossRefGoogle ScholarPubMed
Lipsitch, M., Siller, S. and Nowak, M. A. (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 17291741.CrossRefGoogle ScholarPubMed
Logan, A., Ruiz-González, M. X. and Brown, M. J. F. (2005). The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees. Parasitology 130, 637642.CrossRefGoogle Scholar
MacFarlane, R. P., Lipa, J. J. and Liu, H. (1995). Bumble bee pathogens and internal enemies. Bee World 76, 130148.CrossRefGoogle Scholar
Malone, L. A., Gatehouse, H. S. and Tregidga, E. L. (2001). Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). Journal of Invertebrate Pathology 77, 258268.CrossRefGoogle ScholarPubMed
May, R. M. and Nowak, M. A. (1995). Coinfection and the evolution of virulence. Proceedings of the Royal Society of London, B 261, 209215.Google Scholar
McIvor, C. A. and Malone, L. A. (1995). Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris (L.). New Zealand Journal of Zoology 22, 2531.CrossRefGoogle Scholar
Morand, S., Manning, S. D. and Woolhouse, M. E. J. (1996). Parasite-host coevolution and geographic patterns of parasite infectivity and host susceptibility. Proceedings of the Royal Society of London, B 263, 119128.Google ScholarPubMed
Novotny, J. (1991). Influence of gypsy-moth larvae age on the development of microsporidian diseases. Biologia 46, 105111.Google Scholar
Nowak, M. A. and May, R. M. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London, B 255, 8189.Google ScholarPubMed
Pomeroy, N. and Plowright, R. C. (1980). Maintenance of bumble bee colonies in observation hives (Hymenoptera: Apidae). Canadian Entomologist 112, 321326.CrossRefGoogle Scholar
Regoes, R. R., Nowak, M. A. and Bonhoeffer, S. (2000). Evolution of virulence in a heterogenous host population. Evolution 54, 6471.Google Scholar
Rodd, F. H., Plowright, R. C. and Owen, R. E. (1980). Mortality rates of adult bumble bee workers (Hymenoptera, Apidae). Canadian Journal of Zoology 58, 17181721.CrossRefGoogle Scholar
Ruiz-González, M. X. and Brown, M. J. F. (2006). Males vs workers: testing the assumptions of the haploid susceptibility hypothesis in bumblebees. Behavioral Ecology and Sociobiology 60, 501509.CrossRefGoogle Scholar
Schmid-Hempel, P. (2001). On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites. Naturwissenschaften 88, 147158.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. and Heeb, D. (1991). Worker mortality and colony development in bumblebees, Bombus lucoruum (L.) (Hymenoptera, Apidae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 64, 93108.Google Scholar
Schmid-Hempel, P. and Loosli, R. (1998). A contribution to the knowledge of Nosema infections in bumble bees, Bombus spp. Apidologie 29, 525535.CrossRefGoogle Scholar
Shykoff, J. A. and Schmid-Hempel, P. (1991). Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22, 117125.CrossRefGoogle Scholar
Tay, W. T., O'Mahony, E. M. and Paxton, R. J. (2005). Complete rRNA gene sequence reveal that the microsporidium Nosema bombi infects diverse bumble bee (Bombus spp.) hosts, and contains multiple polymorphic sites. Journal of Eucaryotic Microbiology 52, 505513.Google Scholar
Undeen, A. H. , A. H. and Avery, S. W. (1988). Ammonium chloride inhibition of the germination of spores of Nosema algerae (Microspora: Nosematidae). Journal of Invertebrate Pathology 52, 326334.CrossRefGoogle Scholar
Velthuis, H. H. W. and van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421451.CrossRefGoogle Scholar
Vizoso, D. B. and Ebert, D. (2005). Mixed inoculations of a microsporidian parasite of with horizontal and vertical infections. Oecologia 143, 157166.CrossRefGoogle ScholarPubMed
Whittington, R. and Winston, M. L. (2003). Effects of Nosema bombi and its treatment fumagillin on bumble bee (Bombus occidentalis) colonies. Journal of Invertebrate Pathology 84, 5458.CrossRefGoogle ScholarPubMed