Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T01:21:30.672Z Has data issue: false hasContentIssue false

Histochemical observations on the tegumentary epithelium and interproglottidal glands of Moniezia expansa (Rud., 1805) (Cestoda, Cyclophyllidea)

Published online by Cambridge University Press:  06 April 2009

R. E. Howells
Affiliation:
Department of Zoology, University College, Cardiff
D. A. Erasmus
Affiliation:
Department of Zoology, University College, Cardiff

Extract

Regional differences in the tegumentary tissue of Moniezia expansa, as revealed at the light-microscope level by histological and histochemical techniques, are described and evidence for secretory activity by the interproglottidal glands is presented.

In very immature proglottides the interproglottidal glands are at the ‘precryptic’ stage. Gland cells may be differentiated from other tegumentary cells by their high RNA content and in certain gland cells the presence of an alcian blue staining material.

In mature proglottides the glands consist of rosette-like clusters of cells around crypt-like intuckings of the tegument. Two types of cells are found in the gland, small alcian blue-staining cells which are most numerous in the neck region of the crypt, and larger cells, the predominant gland cells, which do not stain with alcian blue but possess non-specific esterase activity. No other tegumentary cells in Moniezia exhibit this activity. Esterase and phosphatase activity is found in the tegument and crypt of the glands and in the interproglottidal folds.

The non-enzyme histochemistry confirms and extends the observations of previous workers.

Cytochrome oxidase and succinic dehydrogenase were detected in the tegumentary cells and tegument. Very strong reactions were given in the neck and scolex, with a progressive diminution of activity posteriorly along the strobila. Very low activities were recorded in the tegument of the glands.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alt, H. L. & Tischer, O. A. (1931). Observations on the metabolism of the tapeworm, Moniezia expansa. Proc. Soc. exp. Biol. Med. 29, 222–4.CrossRefGoogle Scholar
Arme, C. (1966). Histochemical and biochemical studies on some enzymes of Ligula intestinalis (Cestoda: Pseudophyllidea). J. Parasit. 52, 1, 63.CrossRefGoogle ScholarPubMed
Baker, J. R. (1958). Note on the use of Bromophenol Blue for the histochemical recognition of protein. Q. Jl. microsc. Sci. 99, 459–60.Google Scholar
Bogitsch, B. J. (1963). Histochemical studies on Hymenolepis microstoma (Cestoda: Hymenolepididae). J. Parasit. 49, 989–97.CrossRefGoogle Scholar
Bogitsch, B. J. & Nunally, D. A. (1966). Histochemistry of Hymenolepis microstoma (Cestoda: Hymenolepididae). II. Regional distribution of succinic dehydrogenase. Parasitology 56, 5562.CrossRefGoogle Scholar
von Brand, T. (1933). Untersuchungen über den Stoffbesland einiges Cestodes und den Stoffwechsel von Moniezia expansa. Z. vergl. Physiol. 18, 562–96.CrossRefGoogle Scholar
Brunet, P. C. J. & Kent, P. W. (1955). Mechanism of sclerotin formation: the participation of a beta-glucosida. Nature, Lond. 175, 819–20.CrossRefGoogle Scholar
Burstone, , (1962). Enzyme Histochemistry and Its Application in the Study of Neoplasms. N.Y. and London: Academic Press.Google Scholar
Butcher, R. G., Diengdoh, J. V. & Chayen, J. (1964). A study of the histochemical demonstration of cytochrome oxidase. Q. Jl. microsc. Sci. 105, 4, 497502.Google Scholar
Erasmus, D. A. (1957). Studies on phosphatase systems of cestodes. II. Studies on Cysticercus tenuicollis and Moniezia expansa (adult.) Parasitology 47, 8191.CrossRefGoogle ScholarPubMed
Feigin, I. (1956). A method for the histochemical differentiation of cholesterol and its esters. J. biophys. biochem. Cytol. 2, 213–4.CrossRefGoogle ScholarPubMed
Gilmour, D. (1961). Biochemistry of Insects New York: Academic Press.Google Scholar
Hess, M. & Hollander, F. (1947). Permanent metachromatic staining of mucins in tissue sections and smears. J. Lab. clin. Med. 32, 905–9.Google Scholar
Howells, R. E. (1965). Electron-microscope and histochemical studies on the cuticle and sub-cuticular tissues of Moniezia expansa. Parasitology 55, 20P21P.Google Scholar
Howells, R. E. (1967). Histochemical and electron microscope studies on the cuticle and associated structures of certain cestode parasites. Doctoral dissertation, University of Wales.Google Scholar
Hyman, L. H. (1951). The Invertebrates. Vol. II. Platyhelminthes and Rhynchocoela. New York: McGraw-Hill Book Co.Google Scholar
Kramer, H. & Windrum, G. M. (1954). Sulphation techniques in histochemistry with special reference to metachromasia. J. Histochem. Cytochem. 2, 196208.CrossRefGoogle ScholarPubMed
Lee, D. L. (1966). The structure and composition of the helminth cuticle. Adv. Parasit. 4, 178254. Ed. Dawes, Ben. New York: Academic Press.Google Scholar
Lee, D. L., Rothman, A. H. & Senturia, J. B. (1963). Esterases in Hymenolepis and in Hydatigera. Expl Parasit. 14, 285–95.CrossRefGoogle ScholarPubMed
Lee, D. L. & Tatchell, R. J. (1964). Studies on the tapeworm Anoplocephala perfoliata. Parasitology 54, 467–79.CrossRefGoogle ScholarPubMed
Lui, A., Kralj, N., Krkavica, S. & Becejac, S. (1964). A contribution to the study of the nervous system of some Anoplocephalidae. Veterinarski Arhiv. 34, 112–8.Google Scholar
Lumsden, R. D. (1966). Cytological studies on the absorptive surfaces of cestodes. 1. Z. ParasitKde. 27, 355–82.Google Scholar
Minckert, W. (1905). Mittheilungen zur Histologie des Cestoden. 1. Über Epithelverhaltnisse und struktur der Körpercuticula. Zool. Anz. 29, 401–8.Google Scholar
Monné, L. (1959). On the external cuticles of various helminths and their role in the host-parasite relationships. A histochemical study. Ark. Zool. 12, 343–58.Google Scholar
Nachlas, M. M., Crawford, D. J. & Seligman, A. M. (1957). The histochemical demonstration of leucine aminopeptidase. J. Histochem. Cytochem. 5, 264–78.CrossRefGoogle ScholarPubMed
Nimmo-Smith, R. H. & Standen, O. D. (1963). Phosphomonoesterases of Schistosoma mansoni. Expl Parasit. 13, 305–22.CrossRefGoogle ScholarPubMed
Öhman, C. (1964). Doctoral thesis, University of Wales, Cardiff.Google Scholar
Öhman, C. (1965). The structure and function of the adhesive organ in strigeid trematodes. II. Diplostomum spathaceum Braun, 1893. Parasitology 55, 481502.CrossRefGoogle Scholar
Pearse, A. G. E. (1960). Histochemistry. Theoretical and Applied. London: J. and A. Churchill Ltd.Google Scholar
Pearse, A. G. E. & Scarpelli, D. G. (1958). Physical and chemical protection of cell constituents and the precise localization of enzymes. J. Histochem. Cytochem. 6, 369–76.Google Scholar
Pennoit De Cooman, E. & van Grembergen, G. (1942). Vergeligbend Onderzoek vanhet Fermentsystem bij vrijlevende en parasitaire Plathelminthen. Verh. K. Akad. Wet. 4, 777.Google Scholar
Phifer, K. (1960). Permeation and membrane transport in animal parasites. Further observations on the uptake of glucose by Hymenolepis diminuta. J. Parasit. 46, 137–44.CrossRefGoogle ScholarPubMed
Read, C. P. (1966). Nutrition of intestinal helminths. In Biology of Parasites, pp. 101126. Ed. Soulsby, E. T. L.. N.Y. and London: Academic Press.Google Scholar
Read, C. P. & Simmons, J. E. (1963). Biochemistry and physiology of tapeworms. Physiol. Rev. 43, 263305.CrossRefGoogle ScholarPubMed
Rogers, W. P. (1947). Histological distribution of alkaline phosphatase in helminth parasites. Nature, Lond. 59, 374–5.CrossRefGoogle Scholar
Rothman, A. H. (1963). Electron microscopic studies of tapeworms; the surface structures of Hymenolepis diminuta (Rudolphi, 1819) Blanchard, 1891. Trans. Am. microsc. Soc. 82, 2230.CrossRefGoogle Scholar
Rothman, A. H. & Lee, D. L. (1963). Histochemical demonstration of dehydrogenase activity in the cuticle of cestodes. Expl Parasit. 14, 333–6.CrossRefGoogle ScholarPubMed
Rutenberg, A. M., Rutenberg, S. H., Monis, B., Teague, R. & Seligman, A. M. (1958). Histochemical demonstration of β-D-galactosidase in the rat. J. Histochem. Cytochem. 6, 122–9.CrossRefGoogle Scholar
Schardein, J. L. & Waitz, J. A. (1965). Histochemical studies of esterases in the cuticle and nerve cord of four cyclophyllidean cestodes. J. Parasit. 51, 356–63.CrossRefGoogle Scholar
Singh, K. S. & Singh, K. P. (1958). Morphology and histochemistry of interproglottidal glands of Moniezia expansa. Indian J. Helminth. 10, 111–31.Google Scholar
Spasski, A. A. (1951). Essentials of Cestodology. Vol. 1. Anoplocephalate Tapeworms of Domestic and Wild Animals. Acad. Sci. of U.S.S.R. (English trans. by the Israel Program for Scientific Translations, 1961).Google Scholar
Thompson, M. J., Mosettis, E. & von Brand, T. (1960). Unsaponifiable lipids of Taenia taeniaeformis and Moniezia sp. Expl Parasit. 9, 127–30.CrossRefGoogle ScholarPubMed
Waitz, J. A. (1963). Histochemical studies on the cestode Hydatigena taeniaeformis Batsch, 1786. J. Parasit. 49, 7380.CrossRefGoogle Scholar
Waitz, J. A. & Schardein, J. L. (1964). Histochemical studies of four cyclophyllidean cestodes. J. Parasit. 50, 271–7.CrossRefGoogle ScholarPubMed
Wardle, R. A. (1937). The physiology of tapeworms. In Manitoba Essays, pp. 338–64. 60th anniversary commemoration volume, University of Manitoba.Google Scholar
Wigglesworth, V. B. (1952). The role of iron in histological staining. Q. Jl. microsc. Sci. 93, 105–18.Google Scholar
Yamao, Y. (1952 a). Histochemical studies on endoparasites. VII. Distribution of the glyceromonophosphatases in the tissues of cestodes. Dobutsugabu Zasshi 61, 290–4.Google Scholar
Yamao, Y. (1952 b). Histochemical studies on endoparasites. VIII. Dobutsugabu Zasshi 61, 295316.Google Scholar
Yamao, Y. (1952 c). Histochemical studies on endoparasites. IX. Dobutsugabu Zasshi 61, 317–22.Google Scholar
Yamao, Y. (1952 d). Histochemical studies on endoparasites. X. Tokyo Ika Daigaku Zasshi Betsusata 10, 110.Google Scholar