Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T06:16:16.179Z Has data issue: false hasContentIssue false

High-throughput genotyping assay for the large-scale genetic characterization of Cryptosporidium parasites from human and bovine samples

Published online by Cambridge University Press:  15 November 2013

J. L. ABAL-FABEIRO
Affiliation:
Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
X. MASIDE
Affiliation:
Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
J. LLOVO
Affiliation:
Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain Servicio de Microbioloxía e Parasitoloxía, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
X. BELLO
Affiliation:
Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
M. TORRES
Affiliation:
Centro Nacional de Genotipado, Universidade de Santiago de Compostela, Spain
M. TREVIÑO
Affiliation:
Servicio de Microbioloxía e Parasitoloxía, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
L. MOLDES
Affiliation:
Servicio de Microbioloxía e Parasitoloxía, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
A. MUÑOZ
Affiliation:
Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
A. CARRACEDO
Affiliation:
Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Fundación Pública Galega de Medicina Xenómica (SERGAS)-CIBERER (USC), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589 Jeddah, Kingdom of Saudi Arabia
C. BARTOLOMÉ*
Affiliation:
Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
*
*Corresponding author: CIMUS, Despacho P2D2, Avda. Barcelona s/n, 15782 Santiago de Compostela, Galicia, Spain. E-mail: [email protected]

Summary

The epidemiological study of human cryptosporidiosis requires the characterization of species and subtypes involved in human disease in large sample collections. Molecular genotyping is costly and time-consuming, making the implementation of low-cost, highly efficient technologies increasingly necessary. Here, we designed a protocol based on MALDI-TOF mass spectrometry for the high-throughput genotyping of a panel of 55 single nucleotide variants (SNVs) selected as markers for the identification of common gp60 subtypes of four Cryptosporidium species that infect humans. The method was applied to a panel of 608 human and 63 bovine isolates and the results were compared with control samples typed by Sanger sequencing. The method allowed the identification of species in 610 specimens (90·9%) and gp60 subtype in 605 (90·2%). It displayed excellent performance, with sensitivity and specificity values of 87·3 and 98·0%, respectively. Up to nine genotypes from four different Cryptosporidium species (C. hominis, C. parvum, C. meleagridis and C. felis) were detected in humans; the most common ones were C. hominis subtype Ib, and C. parvum IIa (61·3 and 28·3%, respectively). 96·5% of the bovine samples were typed as IIa. The method performs as well as the widely used Sanger sequencing and is more cost-effective and less time consuming.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abal-Fabeiro, J. L., Maside, X., Bello, X., Llovo, J. and Bartolomé, C. (2013). Multilocus patterns of genetic variation across Cryptosporidium species suggest balancing selection at the gp60 locus. Molecular Ecology 22, 47234732. doi: 10.1111/mec.12425.CrossRefGoogle ScholarPubMed
Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G., Tzipori, S., Buck, G. A., Xu, P., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L. and Kapur, V. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 304, 441445. doi: 10.1126/science.1094786.CrossRefGoogle ScholarPubMed
Casemore, D. P., Amstrong, M., Jackson, B., Nichols, G. and Thorn, B. T. (1984). Screening for Cryptosporidium in stools. Lancet 323, 734735. doi: 10.1016/S0140-6736(84)92245-1.CrossRefGoogle Scholar
Chalmers, R. M. (2008). Cryptosporidium: from laboratory diagnosis to surveillance and outbreaks. Parasite 15, 372378. doi: 10.1051/parasite/2008153372.CrossRefGoogle ScholarPubMed
Chalmers, R. M., Ferguson, C., Caccio, S., Gasser, R. B., Abs, E. L. O. Y. G., Heijnen, L., Xiao, L., Elwin, K., Hadfield, S., Sinclair, M. and Stevens, M. (2005). Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. International Journal for Parasitology 35, 397410. doi: 10.1016/j.ijpara.2005.01.001.CrossRefGoogle ScholarPubMed
Chalmers, R. M., Hadfield, S. J., Jackson, C. J., Elwin, K., Xiao, L. and Hunter, P. (2008). Geographic linkage and variation in Cryptosporidium hominis . Emerging Infectious Diseases 14, 496498. doi: 10.3201/eid1403.071320.CrossRefGoogle ScholarPubMed
Chalmers, R. M., Elwin, K., Thomas, A. L., Guy, E. C. and Mason, B. (2009). Long-term Cryptosporidium typing reveals the aetiology and species-specific epidemiology of human cryptosporidiosis in England and Wales, 2000 to 2003. Eurosurveillance 14, pii: 19086.CrossRefGoogle ScholarPubMed
Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews of Genetics 5, 435445. doi: 10.1038/nrg1348.CrossRefGoogle ScholarPubMed
Gabriel, S., Ziaugra, L. and Tabbaa, D. (2009). SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics, Chapter 2, Unit 2 12. doi: 10.1002/0471142905.hg0212s60.CrossRefGoogle ScholarPubMed
Gasser, R. B. (2006). Molecular tools – advances, opportunities and prospects. Veterinary Parasitology 136, 6989. doi: 10.1016/j.vetpar.2005.12.002.CrossRefGoogle Scholar
Gasser, R. B., Hu, M., Chilton, N. B., Campbell, B. E., Jex, A. J., Otranto, D., Cafarchia, C., Beveridge, I. and Zhu, X. (2006). Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nature Protocols 1, 31213128. doi: 10.1038/nprot.2006.485.CrossRefGoogle ScholarPubMed
Gatei, W., Das, P., Dutta, P., Sen, A., Cama, V., Lal, A. A. and Xiao, L. (2007). Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infection, Genetics and Evolution 7, 197205. doi: 10.1016/j.meegid.2006.08.006.CrossRefGoogle ScholarPubMed
Gatei, W., Barrett, D., Lindo, J. F., Eldemire-Shearer, D., Cama, V. and Xiao, L. (2008). Unique Cryptosporidium population in HIV-infected persons, Jamaica. Emerging Infectious Diseases 14, 841843. doi: 10.3201/eid1405.071277.CrossRefGoogle ScholarPubMed
Geurden, T., Levecke, B., Caccio, S. M., Visser, A., De Groote, G., Casaert, S., Vercruysse, J. and Claerebout, E. (2009). Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology 136, 11611168. doi: 10.1017/S0031182009990436.CrossRefGoogle ScholarPubMed
Goldstein, D. B. and Pollock, D. D. (1997). Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. Journal of Heredity 88, 335342.CrossRefGoogle ScholarPubMed
Hadfield, S. J., Robinson, G., Elwin, K. and Chalmers, R. M. (2011). Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. Journal of Clinical Microbiology 49, 918924. doi: 10.1128/JCM.01733-10.CrossRefGoogle ScholarPubMed
Hijjawi, N., Ng, J., Yang, R., Atoum, M. F. and Ryan, U. (2010). Identification of rare and novel Cryptosporidium GP60 subtypes in human isolates from Jordan. Experimental Parasitology 125, 161164. doi: 10.1016/j.exppara.2010.01.011.CrossRefGoogle ScholarPubMed
Hunter, P. R., Hadfield, S. J., Wilkinson, D., Lake, I. R., Harrison, F. C. and Chalmers, R. M. (2007). Subtypes of Cryptosporidium parvum in humans and disease risk. Emerging Infectious Diseases 13, 8288. doi: 10.3201/eid1301.060481.CrossRefGoogle ScholarPubMed
Jex, A. R. and Gasser, R. B. (2010). Genetic richness and diversity in Cryptosporidium hominis and C. parvum reveals major knowledge gaps and a need for the application of “next generation” technologies – research review. Biotechnology Advances 28, 1726. doi: 10.1016/j.biotechadv.2009.08.003.CrossRefGoogle Scholar
Jex, A. R., Ryan, U. M., Ng, J., Campbell, B. E., Xiao, L., Stevens, M. and Gasser, R. B. (2007 a). Specific and genotypic identification of Cryptosporidium from a broad range of host species by nonisotopic SSCP analysis of nuclear ribosomal DNA. Electrophoresis 28, 28182825. doi: 10.1002/elps.200600772.CrossRefGoogle ScholarPubMed
Jex, A. R., Whipp, M., Campbell, B. E., Caccio, S. M., Stevens, M., Hogg, G. and Gasser, R. B. (2007 b). A practical and cost-effective mutation scanning-based approach for investigating genetic variation in Cryptosporidium . Electrophoresis 28, 38753883. doi: 10.1002/elps.200700279.CrossRefGoogle ScholarPubMed
Jex, A. R., Smith, H. V., Monis, P. T., Campbell, B. E. and Gasser, R. B. (2008). Cryptosporidium – biotechnological advances in the detection, diagnosis and analysis of genetic variation. Biotechnology Advances 26, 304317. doi: 10.1016/j.biotechadv.2008.02.003.CrossRefGoogle ScholarPubMed
Kato, S., Lindergard, G. and Mohammed, H. O. (2003). Utility of the Cryptosporidium oocyst wall protein (COWP) gene in a nested PCR approach for detection infection in cattle. Veterinary Parasitology 111, 153159. doi: 10.1016/S0304-4017(02)00353-9.CrossRefGoogle Scholar
Leoni, F., Amar, C., Nichols, G., Pedraza-Diaz, S. and McLauchlin, J. (2006). Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. Journal of Medical Microbiology 55, 703707. doi: 10.1099/jmm.0.46251-0.CrossRefGoogle ScholarPubMed
Mallon, M. E., MacLeod, A., Wastling, J. M., Smith, H. and Tait, A. (2003). Multilocus genotyping of Cryptosporidium parvum Type 2: population genetics and sub-structuring. Infection, Genetics and Evolution 3, 207218. doi: 10.1016/S1567-1348(03)00089-3.CrossRefGoogle ScholarPubMed
McLauchlin, J., Amar, C., Pedraza-Diaz, S. and Nichols, G. L. (2000). Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. Journal of Clinical Microbiology 38, 39843990.CrossRefGoogle Scholar
Mendisco, F., Keyser, C., Hollard, C., Seldes, V., Nielsen, A. E., Crubezy, E. and Ludes, B. (2011). Application of the iPLEX Gold SNP genotyping method for the analysis of Amerindian ancient DNA samples: benefits for ancient population studies. Electrophoresis 32, 386393. doi: 10.1002/elps.201000483.CrossRefGoogle ScholarPubMed
Navarro-i-Martinez, L., Bornay-Llinares, F. J., Rueda, C., del Aguila, C., da Silva, A. J., Oleaga, A., Ramajo, V., Fenoy, S. and Pieniazek, N. J. (2003). Molecular characterization of Cryptosporidium sp. from animals in Spain. Journal of Eukaryotic Microbiology 50(Suppl.), 553554. doi: 10.1111/j.1550-7408.2003.tb00626.x.CrossRefGoogle ScholarPubMed
Pedraza-Diaz, S., Amar, C. F., McLauchlin, J., Nichols, G. L., Cotton, K. M., Godwin, P., Iversen, A. M., Milne, L., Mulla, J. R., Nye, K., Panigrahl, H., Venn, S. R., Wiggins, R., Williams, M. and Youngs, E. R. (2001). Cryptosporidium meleagridis from humans: molecular analysis and description of affected patients. Journal of Infection 42, 243250. doi: 10.1053/jinf.2001.0839.CrossRefGoogle ScholarPubMed
Sauer, S. and Gut, I. G. (2002). Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Journal of Chromatography B. Analytical Technologies in Biomedical and Life Sciences 782, 7387. doi: 10.1016/S1570-0232(02)00692-X.CrossRefGoogle ScholarPubMed
Smith, H. V., Nichols, R. A., Mallon, M., Macleod, A., Tait, A., Reilly, W. J., Browning, L. M., Gray, D., Reid, S. W. and Wastling, J. M. (2005). Natural Cryptosporidium hominis infections in Scottish cattle. Veterinary Record 156, 710711. doi: 10.1136/vr.156.22.710.CrossRefGoogle ScholarPubMed
Strong, W. B. and Nelson, R. G. (2000). Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Molecular and Biochemical Parasitology 107, 132. doi: 10.1016/S0166-6851(99)00225-X.CrossRefGoogle ScholarPubMed
Strong, W. B., Gut, J. and Nelson, R. G. (2000). Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infection and Immunity 68, 41174134. doi: 10.1128/IAI.68.7.4117-4134.2000.CrossRefGoogle ScholarPubMed
Stroup, S. E., Roy, S., McHele, J., Maro, V., Ntabaguzi, S., Siddique, A., Kang, G., Guerrant, R. L., Kirkpatrick, B. D., Fayer, R., Herbein, J., Ward, H., Haque, R. and Houpt, E. R. (2006). Real-time PCR detection and speciation of Cryptosporidium infection using Scorpion probes. Journal of Medical Microbiology 55, 12171222. doi: 10.1099/jmm.0.46678-0.CrossRefGoogle ScholarPubMed
Sulaiman, I. M., Hira, P. R., Zhou, L., Al-Ali, F. M., Al-Shelahi, F. A., Shweiki, H. M., Iqbal, J., Khalid, N. and Xiao, L. (2005). Unique endemicity of cryptosporidiosis in children in Kuwait. Journal of Clinical Microbiology 43, 28052809. doi: 10.1128/JCM.43.6.2805-2809.2005.CrossRefGoogle ScholarPubMed
Tanriverdi, S. and Widmer, G. (2006). Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis . Infection, Genetics and Evolution 6, 113122. doi: 10.1016/j.meegid.2005.02.002.CrossRefGoogle ScholarPubMed
The ANOFEL Cryptosporidium National Network (2010). Laboratory-based surveillance for Cryptosporidium in France, 2006–2009. Eurosurveillance 15, 19642.Google Scholar
Widmer, G. (2009). Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis . Epidemiology and Infection 137, 18001808. doi: 10.1017/S0950268809990215.CrossRefGoogle ScholarPubMed
Widmer, G. and Lee, Y. (2010). Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis . Applied and Environmental Microbiology 76, 66396644. doi: 10.1128/AEM.01268-10.CrossRefGoogle ScholarPubMed
Xiao, L. (2010). Molecular epidemiology of cryptosporidiosis: an update. Experimental Parasitology 124, 8089. doi: 10.1016/j.exppara.2009.03.018.CrossRefGoogle ScholarPubMed
Xiao, L., Fayer, R., Ryan, U. and Upton, S. J. (2004). Cryptosporidium taxonomy: recent advances and implications for public health. Clinical Microbiology Reviews 17, 7297. doi: 10.1128/CMR.17.1.72-97.2004.CrossRefGoogle ScholarPubMed
Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. (2004). The genome of Cryptosporidium hominis . Nature 431, 11071112. doi: 10.1038/nature02977.CrossRefGoogle ScholarPubMed
Yoder, J. S., Harral, C. and Beach, M. J. (2010). Cryptosporidiosis surveillance – United States, 2006–2008. MMWR . Surveillance Summaries 59, 114.Google Scholar
Supplementary material: PDF

Abal-Fabeiro et al. Supplementary Material

Tables

Download Abal-Fabeiro et al. Supplementary Material(PDF)
PDF 281.2 KB