Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T13:12:00.925Z Has data issue: false hasContentIssue false

The gull-tapeworm, Diphyllobothrium dendriticum and neuropeptide F: an immunocytochemical study

Published online by Cambridge University Press:  06 April 2009

M. K. S. Gustafsson
Affiliation:
Department of Biology, Åbo Akademi University, Artillerigatan 6, FIN-20520 Åbo, Finland
D. W. Halton
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland
A. G. Maule
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland
M. Reuter
Affiliation:
Department of Biology, Åbo Akademi University, Artillerigatan 6, FIN-20520 Åbo, Finland
C. Shaw
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland

Extract

Neuropeptide F (Moniezia expansa) immunoreactivity (NPF-IR) has been detected in the nervous system of plerocercoid and adult stages of the gull-tapeworm Diphyllobothrium dendriticum, using immunocytochemical methodology. The application of the antiserum for this authentic flatworm neuropeptide to whole-mounts and frozen sections of the worm has resulted in new information about its neuroanatomy. Thus, at regular intervals, transverse nerves extend from the main nerve cords laterally, joining the longitudinal lateral minor cords in the cortical parenchyma. In the adult worm, the transverse nerves are located at the posterior border of each proglottis. The medullary parenchyma lacks NPF-IR. The NPF-immunoreactive cell bodies are bi- to multipolar and preferentially located in the peripheral nervous system, in close association with the holdfast musculature of the scolex and the extensive body musculature. NPF-IR was observed in the innervation to the muscular ducts of the reproductive system. The pattern of NPF-IR was compared with that recorded for RFamide- and 5-HT-IR and double-immunostaining has revealed separate populations of serotoninergic and peptidergic neurones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, R. S. K., Calow, P. & Olive, P. J. W. (1988). The Invertebrates: a New Synthesis. Oxford: Blackwell Scientific Publications.Google Scholar
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study for the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.CrossRefGoogle Scholar
Curry, W. J., Shaw, C., Johnston, C. F., Thim, L. & Buchanan, K. D. (1992). Neuropeptide F: primary structure from the turbellarian, Artioposthia triangulata. Comparative Biochemistry and Physiology 101C, 269–74.Google ScholarPubMed
Eriksson, K., Gustafsson, M. & Åkerlind, G. (1993). High-performance liquid chromatographic analysis of monoamines in the cestode Diphyllobothrium dendriticum. Parasitology Research 79, 699702.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1985). Cestode neurotransmitters. Parasitology Today 1, 72–5.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1990). The cells of a cestode, Diphyllobothrium dendriticum as a model in cell biology. Acta Academiae Aboensis, Ser B 50, 1344.Google Scholar
Gustafsson, M. K. S. (1991). Skin the tapeworms before you stain their nervous system! A new method for whole-mount immunocytochemistry. Parasitology Research 77, 509–16.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1992). The neuroanatomy of parasitic flatworms. Advances in Neuroimmunology 2, 267–86.CrossRefGoogle Scholar
Gustafsson, M. K. S. & Eriksson, K. (1991). Localization and identification of catecholamines in the nervous system of Diphyllobothrium dendriticum. Parasitology Research 77, 489502.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Eriksson, K. (1992). Never ending growth and a growth factor. I. Immunocytochemical evidence for the presence of basic fibroblast growth factor in a tapeworm. Growth Factors 7, 327–34.CrossRefGoogle Scholar
Gustafsson, M. K. S. & Vaihela, B. (1981). Two types of frontal glands in Diphyllobothrium dendriticum (Cestoda, Pseudophyllidea) and their fate during the maturation of the worm. Zeitschrift für Parasitenkunde 66, 145–54.CrossRefGoogle Scholar
Gustafsson, M. K. S., Eriksson, K. & Hydén, A. (1994). Never ending growth and a growth factor. II. Immunocytochemical evidence for the presence of epidermal growth factor in a tapeworm. Hydrobiologia (in the Press).Google Scholar
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Nässel, D. & Kuusisto, A. (1993). Immunocytochemical evidence for the presence of substance P-like peptide in Diphyllobothrium dendriticum. Parasitology 106, 83–9.CrossRefGoogle ScholarPubMed
Gustaffsson, M. K. S. & Wikgren, M. C. (1989). Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapeworm Diphyllobothrium dendriticum. Parasitology Research 75, 396400.CrossRefGoogle Scholar
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin and the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.CrossRefGoogle ScholarPubMed
Halton, D. W., Shaw, C., Maule, A. G. & Smart, D. (1994). Regulatory peptides in helminth parasites. Advances in Parasitology 34, 163227.CrossRefGoogle ScholarPubMed
Hrcková, G., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C. & Johnston, C. F. (1993). Neuropeptide F-immunoreactivity in the tetrathyridium of Mesocestoides corti (Cestoda, Cyclophyllidea). Parasitology Research 79, 690–5.CrossRefGoogle ScholarPubMed
Keenan, C. L., Coss, R. & Koopowitz, H. (1981). Cytoarchitecture of primitive brains: Golgi studies in flatworms. Journal of Comparative Neurology 195, 694716.Google ScholarPubMed
Koopowitz, H. (1986). On the evolution of the central nervous systems: implications from polyclad turbellarian neurobiology. Hydrobiologia 132, 7987.CrossRefGoogle Scholar
Koopowitz, H., Elvin, M. & Bae, B. (1994). Comparison of the nervous system of the rhabdocoel, Mesostoma ehrenbergii with that of the polyclad, Notoplana acticola. Hydrobiologia (in the Press).Google Scholar
Lindroos, P. (1983). The excretory ducts of Diphyllobothrium dendriticum (Nitzsch 1824) plerocercoids: ultrastructure and marker distribution. Zeitschrift für Parasitenkunde 69, 229–37.CrossRefGoogle ScholarPubMed
Lindroos, P. & Gardberg, T. (1982). The excretory system of Diphyllobothrium dendriticum (Nitzsch 1824) plerocercoids as revealed by an injection technique. Zeitschrift für Parasitenkunde 67, 289–97.CrossRefGoogle Scholar
Leung, P. S., Shaw, C., Maule, A. G., Thim, L., Johnston, C. F. & Irvine, G. B. (1992). The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa. Regulatory peptides 41, 7181.CrossRefGoogle ScholarPubMed
Mamkaev, Y. V. (1986). Initial morphological diversity as a criterion in deciphering turbellarian phylogeny. Hydrobiologia 132, 31–3.CrossRefGoogle Scholar
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Marks, N. J., Maule, A. G., Halton, D. W., Shaw, C. & Johnston, C. F. (1993). Distribution and immunochemical characterization of neuropeptide F (NPF) (Moniezia expansa) – immunoreactivity in Proteocephalus pollanicola (Cestoda: Proteocephalidea). Comparative and Biochemical Physiology 104C, 381–6.Google ScholarPubMed
Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990). The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255–73.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Halton, D. W., Brennan, G. P., Johnston, C. F. & Moore, S. (1992 a). Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 105, 505–12.CrossRefGoogle ScholarPubMed
Maule, A. G., Brennan, G. P., Halton, D. W., Shaw, C., Johnston, C. F. & Moore, S. (1992 b). Neuropeptide F-immunoreactivity in the monogenean parasite Diclidophora merlangi. Parasitology Research 78, 655–60.CrossRefGoogle ScholarPubMed
McKay, D. M., Fairweather, I., Johnston, C. F., Shaw, C. & Halton, D. W. (1991). Immunocytochemical and radioimmunometrical demonstration of serotonin- and neuropeptide immunoreactivities in the adult rat tapeworm Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology 103, 275–89.CrossRefGoogle ScholarPubMed
Reuter, M. & Gustafsson, M. K. S. (1994). The flatworm nervous system – pattern and phylogeny. Advances in Life Science (in the Press).Google Scholar
Wikgren, M., Reuter, M., Gustafsson, M. K. S. & Lindroos, P. (1990). Immunocytochemical localization of histamine in flatworms. Cell and Tissue Research 260, 479–84.CrossRefGoogle ScholarPubMed