Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:00:44.314Z Has data issue: false hasContentIssue false

Genomic and phenotypic diversity of Tunisian Theileria annulata isolates

Published online by Cambridge University Press:  06 April 2009

L. Ben Miled
Affiliation:
Laboratoire d’Hématologie et d' Immunopathologie, Faculté de Médecine de Tunis, Tunisie Centre for Tropical Veterinary Medicine, Easter Bush, Roslin, Midlothian EH25 9RG, Scotland, U.K.
K. Dellagi
Affiliation:
Laboratoire d’Hématologie et d' Immunopathologie, Faculté de Médecine de Tunis, Tunisie
G. Bernardi
Affiliation:
Laboratoire d’Hématologie et d' Immunopathologie, Faculté de Médecine de Tunis, Tunisie
T. R. Melrose
Affiliation:
Centre for Tropical Veterinary Medicine, Easter Bush, Roslin, Midlothian EH25 9RG, Scotland, U.K.
M. Darghouth
Affiliation:
École Nationale de Médecine Vétérinaire, 2020 Sidi Thabet, Tunisie
A. Bouattour
Affiliation:
École Nationale de Médecine Vétérinaire, 2020 Sidi Thabet, Tunisie
J. Kinnaird
Affiliation:
Wellcome Unit for Molecular Parasitology, Faculty of Veterinary Medicine, Bearsden Road, Glasgow G61 1QY, Scotland, U.K.
B. Shiels
Affiliation:
Wellcome Unit for Molecular Parasitology, Faculty of Veterinary Medicine, Bearsden Road, Glasgow G61 1QY, Scotland, U.K.
A. Tait
Affiliation:
Wellcome Unit for Molecular Parasitology, Faculty of Veterinary Medicine, Bearsden Road, Glasgow G61 1QY, Scotland, U.K.
C. G. D. Brown
Affiliation:
Centre for Tropical Veterinary Medicine, Easter Bush, Roslin, Midlothian EH25 9RG, Scotland, U.K.

Summary

This study describes polymorphism in Theileria annulata, an intracellular protozoan parasite of bovine leucocytes and red blood cells. Fifty-three different stocks of T. annulata, isolated from 17 sites (districts) in Tunisia, have been characterized by anti-parasite monoclonal antibody (MAb) reactivity, glucose phosphate isomerase (GPI) isoenzyme electrophoresis, and Southern blotting with two genomic DNA probes. There appears to be considerable diversity amongst T. annulata stocks from Tunisia, no two isolates being identical, even those from animals on the same farm. Two distinct antigenic populations were detected by MAb 7E7. They were defined by negative and positive cells in the indirect fluorescent antibody test. The percentage of positive cells in different isolates ranged between 0 and 100%. The population variation seen by GPI analysis and DNA probes was greater; 7 different GPI phenotypes were identified amongst the stocks studied, while DNA probes T. annulata Tunis (TaT) 17 and 21 detected up to 5 different variants. The majority of isolates were shown to contain more than one parasite population, the number of variants per isolate ranging from 1 to 4. No correlation between particular parasite phenotypes or genotypes and their geographical site of isolation was observed. Selection of parasite populations in vivo and in vitro is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, B. A. & Allsopp, M. T. E. P. (1988). Theileria parva: genomic DNA studies reveal intra-specific sequence diversity. Molecular and Biochemical Parasitology 238, 7784.CrossRefGoogle Scholar
Babiker, H. A., Creasey, A. M., Fenton, B., Bayoumi, R. A. L., Arnot, D. E. & Walliker, D. (1991). Genetic diversity of Plasmodium falciparum in a village in eastern Sudan. 1. Diversity of enzymes, 2D-PAGE proteins and antigen. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 572–7.CrossRefGoogle Scholar
Barnett, S. F. (1963). The biological races of the bovine Theileria and their host–parasite relationship In Immunity to Protozoa (ed. Garnham, P. C. C., Pierce, A. E. & Roitt, I.), pp. 180195. Oxford: Blackwell Scientific Publications.Google Scholar
Brown, C. G. D. (1983). Theileria. In In vitro Cultivation of Protozoan Parasites (ed. Jensen, J. B.), pp. 243–84. Boca Raton, Florida: CRC Press.Google Scholar
Church, G. M. & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81, 1991–5.CrossRefGoogle ScholarPubMed
Conrad, P. A., Iams, K., Brown, W. C., Sohanpal, B. & Ole Moi Yoi, O. K. (1987 a). DNA probes detect genomic diversity in Theileria parva stocks. Molecular and Biochemical Parasitology 25, 213–16.CrossRefGoogle ScholarPubMed
Conrad, P. A., Stagg, D. A., Grootenhuis, J. G., Irvin, A. D., Newson, J., Njamunggeh, R. E. G., Rossiter, P. B. & young, A. S. (1987 b). Isolation of Theileria parasites from African buffalo (Syncerus caffer) and characterization with anti-schizont monoclonal antibodies. Parasitology 94, 413–23.CrossRefGoogle ScholarPubMed
Conrad, P. A., Ole Moi Yoi, O. K., Baldwin, C. D., Dolan, T. T., O'callaghan, C. J., Njamunggeh, R. E. G., Grootenhuis, J. C., Stagg, D. A., Leitch, B. L. & Young, A. S. (1989). Characterization of buffalo-derived Theileria parasites with monoclonal antibodies and DNA probes. Parasitology 98, 171–88.CrossRefGoogle ScholarPubMed
Dickson, J. & Shiels, B. R. (1993). Antigenic diversity of a major merozoite surface molecule in Theileria annulata. Molecular and Biochemical Parasitology 57, 5564.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
Martin, W. J., Finerty, J. & Rosenthal, A. (1971). Isolation of Plasmodium berghei (Malaria) parasites by ammonium chloride lysis of infected erythrocytes. Nature, London 233, 260–1.Google ScholarPubMed
Matsuba, T., Kawakami, Y., Iwai, H. & Onuma, M. (1992). Genomic analysis of Theileria sergenti stocks in Japan with DNA probes. Veterinary Parasitology 41, 3543.CrossRefGoogle ScholarPubMed
Melrose, T. R. (1983). Isoenzyme studies on Theileria parva and Theileria annulata with special reference to glucose phosphate isomerase, E.C.5.3.1.9. Thesis submitted for membership of the Institute of Biology, London.Google Scholar
Melrose, T. R., Brown, C. G. D., Morzaria, S. P., Ocama, J. G. R. & Irvin, A. D. (1984). Glucose phosphate isomerase polymorphism in Theileria annulata and T. parva. Tropical Animal Health and Production 16, 239–45.CrossRefGoogle ScholarPubMed
Minami, T., Spooner, P. R., Irvin, A. D., Ocama, J. G. R., Dobbelaere, D. A. E. & Fujinaga, T. (1983). Characterization of stocks of Theileria parva by monoclonal antibody profiles. Research in Veterinary Science 35, 334–40.CrossRefGoogle ScholarPubMed
Morzaria, S. P., Young, J. R., Spooner, P. R., Dolan, T. R., Young, A. S. & Bishop, P. R. (1992). Evidence of a sexual cycle in Theileria parva and characterization of the recombinants. Proceedings of the First International Conference on Tick-Borne Pathogens at the Host/Vector Interface, Saint Paul, Minnesota 15–18 09 1992, pp. 7174.Google Scholar
Pearson, T. W., Pinder, M., Roelants, G. E., Kar, S. K., Lundin, L. B., Mayor-Withey, K. S. & Hewett, R. S. (1980). Methods for deriviation and detection of anti-parasite monoclonal antibodies. Journal of Immunological Methods 34, 141–54.CrossRefGoogle Scholar
Pinder, M. & Hewett, R. S. (1980). Monoclonal antibodies detect antigenic diversity in Theileria parva parasites. Journal of Immunology 124, 1000–1.CrossRefGoogle ScholarPubMed
Pipano, E. (1977). Basic principles of Theileria annulata control. In Theileriosis (ed. Henson, J. B. & Campbell, M.), pp. 5565. Ottawa: International Development Research Centre.Google Scholar
Pipano, E. (1979). Virulence and immunogenicity of cultured T. annulata schizonts. Journal of the South African Veterinary Association 50, 332–3.Google Scholar
Pipano, E., Weisman, Y. & Benado, A. (1974). The virulence of four local strains of Theileria annulata. Refuah Veterinarith 31, 5963.Google Scholar
Purnell, R. E. (1978). Theileria annulata as a hazard to cattle in countries in Northern Mediterranean littoral. Veterinary Science Communications 2, 310.CrossRefGoogle Scholar
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1991). Genetic hybrids of Plasmodium falciparum identified by amplification of genomic DNA from single oocysts. Molecular and Biochemical Parasitology 49, 239–44.CrossRefGoogle ScholarPubMed
Shiels, B., McDougall, C., Tait, A. & Brown, C. G. D. (1986). Antigenic diversity of Theileria annulata macroschizonts. Veterinary Parasitology 21, 110.CrossRefGoogle ScholarPubMed
Shiels, B. R., Kinnaird, J., McKellar, S., Dickson, J., Ben Miled, L., Melrose, R., Brown, C. G. D. & Tait, A. (1992). Disruptions of synchrony between parasite growth and host cell division is a determinant of differentiation to the merozoite in Theileria annulata. Journal of Cell Science 101, 99107.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Toye, P. G., Goddeeris, B. M., Iams, K., Musoke, A. J. & Morrison, W. I. (1991). Characterization of a polymorphic immunodominant molecule in sporozoites and schizonts of Theileria parva. Parasite Immunology 13, 4952.CrossRefGoogle ScholarPubMed
Wilkie, G. M., Melrose, T. R., Fletcher, J. D. & Brown, C. G. D. (1986). GPI isoenzyme identification of cloned populations of Theileria annulata (Ankara) after passage through the vertebrate and invertebrate hosts. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 987–8.Google Scholar
Williamson, S., Tait, A., Brown, C. G. D., Walker, A., Beck, P., Shiels, B., Fletcher, J. & Hall, R. (1989). Theileria annulata sporozoite surface antigen expressed in Escherichia coli elicits neutralizing antibody. Proceedings of the National Academy of Sciences, USA 86, 4639–43.CrossRefGoogle ScholarPubMed