Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T14:03:33.611Z Has data issue: false hasContentIssue false

Genome sequences reveal divergence times of malaria parasite lineages

Published online by Cambridge University Press:  01 December 2010

JOANA C. SILVA
Affiliation:
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
AMY EGAN
Affiliation:
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
ROBERT FRIEDMAN
Affiliation:
Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
JAMES B. MUNRO
Affiliation:
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
JANE M. CARLTON
Affiliation:
Department of Medical Parasitology, New York University School of Medicine, New York, NY 10011, USA
AUSTIN L. HUGHES*
Affiliation:
Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
*
*Corresponding author: Tel: +1-803-777-9186. E-mail: [email protected]

Summary

Objective

The evolutionary history of human malaria parasites (genus Plasmodium) has long been a subject of speculation and controversy. The complete genome sequences of the two most widespread human malaria parasites, P. falciparum and P. vivax, and of the monkey parasite P. knowlesi are now available, together with the draft genomes of the chimpanzee parasite P. reichenowi, three rodent parasites, P. yoelii yoelli, P. berghei and P. chabaudi chabaudi, and one avian parasite, P. gallinaceum.

Methods

We present here an analysis of 45 orthologous gene sequences across the eight species that resolves the relationships of major Plasmodium lineages, and provides the first comprehensive dating of the age of those groups.

Results

Our analyses support the hypothesis that the last common ancestor of P. falciparum and the chimpanzee parasite P. reichenowi occurred around the time of the human-chimpanzee divergence. P. falciparum infections of African apes are most likely derived from humans and not the other way around. On the other hand, P. vivax, split from the monkey parasite P. knowlesi in the much more distant past, during the time that encompasses the separation of the Great Apes and Old World Monkeys.

Conclusion

The results support an ancient association between malaria parasites and their primate hosts, including humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abascal, F., Zardoya, R. and Posada, D. (2005). ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21, 21042105.CrossRefGoogle ScholarPubMed
Anderson, T. J., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, M. U. and Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution 17, 14671482.CrossRefGoogle ScholarPubMed
Aquadro, C. F., Dumont, V. B. and Reed, F. A. (2001). Genome-wide variation in the human and fruitfly: a comparison. Current Opinion in Genetics and Development 11, 627634.CrossRefGoogle ScholarPubMed
Caldecott, J. and Miles, L. (2005). World Atlas of Great Apes and their Conservation. University of California Press, Berkeley.Google Scholar
Caswell, J., Mallick, S., Richter, D. J., Neubauer, J., Schirmer, C., Gnerre, S. and Reich, D. (2008). Analysis of chimpanzee history based on genome sequence alignments. PLoS Genetics 4, e1000057.CrossRefGoogle ScholarPubMed
Cox-Singh, J., Davis, T. M., Lee, K. S., Shamsul, S. S., Matusop, A., Ratnam, S., Rahman, H. A., Conway, D. J. and Singh, B. (2008). Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clinical Infectious Diseases 46, 165171.CrossRefGoogle ScholarPubMed
Dávalos, L. M. and Perkins, S. L. (2008). Saturation and base composition bias explain phylogenomic conflict in Plasmodium. Genomics 91, 433442.CrossRefGoogle ScholarPubMed
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Duval, L., Fourment, M., Nerrienet, E., Rousset, D., Sadeuh, S. A., Goodman, S. M., Andriaholinirina, N. V., Randrianarivelojosia, M., Paul, R. E., Robert, V., Ayala, F. J. and Ariey, F. (2010). African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proceedings of the National Academy of Sciences, USA 107, 1056110566.CrossRefGoogle ScholarPubMed
Egan, A., Mahurkar, A., Crabtree, J., Badger, J. H., Carlton, J. M. and Silva, J. C. (2008). IDEA: Interactive Display for Evolutionary Analyses. BMC Bioinformatics 9, 524.Google Scholar
Escalante, A. A. and Ayala, F. J. (1994). Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences, USA 91, 1137311377.CrossRefGoogle ScholarPubMed
Escalante, A. A., Cornejo, O. E., Freeland, D. E., Poe, A. C., Durrego, E., Collins, W. E. and Lal, A. A. (2005). A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. Proceedings of the National Academy of Sciences, USA 102, 19801985.CrossRefGoogle ScholarPubMed
Escalante, A. A., Freeland, D. E., Collins, W. E. and Lal, A. A. (1998). The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proceedings of the National Academy of Sciences, USA 95, 81248129.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Garamszegi, L. Z. (2009). Patterns of co-speciation and host switching in primate malaria parasites. Malaria Journal 8, 110.CrossRefGoogle ScholarPubMed
Glazko, G. V. and Nei, M. (2003). Estimation of divergence times for major lineages of primate species. Molecular Biology and Evolution 20, 424434.CrossRefGoogle ScholarPubMed
Harcourt, A. H. (1981). Can Uganda's gorillas survive? – A survey of the Bwindi Forest Reserve. Biological Conservation 19, 269282.CrossRefGoogle Scholar
Hayakawa, T., Culleton, R., Otani, H., Horii, T. and Tanabe, K. (2008). Big bang in the evolution of extant malaria parasites. Molecular Biology and Evolution 25, 22332239.CrossRefGoogle Scholar
Honeycutt, R. L. (2009). Rodents (Rodentia). In The Timetree of Life (ed. Hedges, S. B. and Kumar, S.), pp. 490494. Oxford University Press, New York.CrossRefGoogle Scholar
Hopkin, M. (2007). Gorillas on the list. Nature 449, 127.CrossRefGoogle ScholarPubMed
Hotez, P. J., Molyneux, D. H., Fenwick, A., Ottesen, E., Ehrlich Sachs, S. and Sachs, J. D. (2006). Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Medicine 3, e102.CrossRefGoogle ScholarPubMed
Hughes, A. L., and French, J. O. (2007). Homologous recombination and the pattern of nucleotide substitution in Ehrlichia ruminantium. Gene 387, 3137.CrossRefGoogle ScholarPubMed
Hughes, A. L. and Nei, M. (1990). Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Molecular Biology and Evolution 7, 491514.Google ScholarPubMed
Hughes, A. L. and Verra, F. (2001). Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proceedings of the Royal Society of London B 268, 18551860.CrossRefGoogle ScholarPubMed
Hughes, A. L. and Verra, F. (2002). Extensive polymorphism and ancient origin of Plasmodium falciparum. Trends in Parasitology 18, 348351.CrossRefGoogle ScholarPubMed
Hughes, A. L. and Verra, F. (2010). Malaria parasite sequences from chimpanzee support the co-speciation hypothesis for the origin of virulent human malaria (Plasmodium falciparum). Molecular Phylogenetics and Evolution 57, 135143.CrossRefGoogle ScholarPubMed
Hughes, M. K. and Hughes, A. L. (1995). Natural selection on Plasmodium surface proteins. Molecular and Biochemical Parasitology 71, 99113.CrossRefGoogle ScholarPubMed
Jongwutiwes, S., Putaporntip, C., Iwasaki, T., Ferreira, M. U., Kanbara, H. and Hughes, A. L. (2005). Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Molecular Biology and Evolution 22, 17331739.CrossRefGoogle ScholarPubMed
Joy, D. A., Feng, X., Mu, J., Furuya, F., Chotivanich, K., Krettli, A. U., Ho, M., Wang, A., White, N. J., Suh, E., Beerli, P., and Su, X. (2003). Early origin and recent expansion of Plasmodium falciparum. Science 300, 318321.CrossRefGoogle ScholarPubMed
Kappe, S. H., Vaughn, A. M., Boddey, J. A. and Cowman, A. F. (2010). That was then but this is now: malaria research in the time of an eradication agenda. Science 328, 862866.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R. (1968). Malaria parasites of Thamnomys rutilans (Rodentia, Muridae) in Nigeria. Bulletin of the World Health Organization 38, 822824.Google ScholarPubMed
Krief, S., Escalante, A. A., Pacheco, M. A., Mugisha, L., Andre, C., Halbwax, M., Fischer, A., Krief, J. M., Kasenene, J. M., Crandfield, M., Cornejo, O. E., Chavatte, J. M., Lin, C., Letourneur, F., Gruner, A. C., McCutchan, T. F., Renia, L. and Snounou, G. (2010). On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos. PLoS Pathogens 6, e1000765.CrossRefGoogle ScholarPubMed
Lefevre, T., Sanchez, M., Ponton, F., Hughes, D. and Thomas, F. (2007). Virulence and resistance in malaria: who drives the outcome of the infection? Trends in Parasitology 23, 299302.CrossRefGoogle ScholarPubMed
Li, W. H. (1997). Molecular Evolution. Sinauer, Sunderland, MA.Google ScholarPubMed
Li, W.-H. and Sadler, L. A. (1991). Low nucleotide diversity in man. Genetics 129, 513523.CrossRefGoogle ScholarPubMed
Liu, W., Li, Y., Learn, G. H., Rudicell, R. S., Robertson, J. D., Keele, B. F., Ndjango, J.-B. N., Sanz, C. M., Morgan, D. B., Locatelli, S., Gonder, M. K., Kranzusch, P. J., Walsh, P. D., Delaporte, E., Mpoudi-Ngole, E., Georgiev, A. V., Müller, M. N., Shaw, G. M., Peeters, M., Sharp, P. M., Rayner, J. C. and Hahn, B. H. (2010). Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420425.CrossRefGoogle ScholarPubMed
Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distribution in West Africa. American Anthropologist 60, 531561.CrossRefGoogle Scholar
Martinsen, E. S., Perkins, S. L. and Schall, J. J. (2008). A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution 47, 261273.CrossRefGoogle ScholarPubMed
McCutchan, T. F., Kissinger, J. C., Touray, M. G., Rogers, M. J., Li, J., Sullivan, M., Braga, E. M., Krettli, A. U. and Miller, L. H. (1996). Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications. Proceedings of the National Academy of Sciences, USA 93, 1188911894.CrossRefGoogle ScholarPubMed
McIntosh, M. T., Srivasta, R. and Vaidya, A. B. (1998). Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. Molecular and Biochemical Parasitology 95, 6980.CrossRefGoogle ScholarPubMed
Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., Hoover, P. and Warnow, T. (2010). The CIPRES Portals. CIPRES. 2009-08-04. URL: http://www.phylo.org/sub_sections/portal. Accessed: 2009-08-04. (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)Google Scholar
Mitsui, H., Arisue, N., Sakihama, N., Inagaki, Y., Horii, T., Hasegawa, M., Tanabe, K. and Hashimoto, T. (2010). Phylogeny of Asian primate malarias inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile. Gene 450, 3238.CrossRefGoogle ScholarPubMed
Morgan, D., Sanz, C., Onononga, J. R. and Strindberg, S. (2006). Ape abundance and habitat use in the Gouaougo Triange, Republic of Congo. International Journal of Primatology 27, 147179.CrossRefGoogle Scholar
Mu, J., Duan, J., Markova, K., Joy, D., Huynh, C. Q., Branch, O. H., Li, W.-H. and Su, X. (2002). Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418, 323326.CrossRefGoogle ScholarPubMed
Mu, J., Joy, D. A., Duan, J., Huang, Y., Carlton, J., Walker, J., Barnwell, J., Beerli, P., Charleston, M. A., Pybus, O. G. and Su, X. (2005). Host switch leads to emergence of Plasmodium vivax malaria in humans. Molecular Biology and Evolution 22, 16861693.CrossRefGoogle ScholarPubMed
Nei, M. and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418426.Google ScholarPubMed
Nei, M. and Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.CrossRefGoogle Scholar
Ollomo, B., Durand, P., Prugnolle, F., Douzery, E., Arnathau, C., Nkoge, D., Leroy, E. and Renaud, F. (2009). A new malaria agent in African hominids. PLoS Pathogens 5, e1000446.CrossRefGoogle ScholarPubMed
Perkins, S. L. and Schall, J. J. (2002). A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. Journal of Parasitology 88, 972978.CrossRefGoogle ScholarPubMed
Prugnolle, F., Durand, P., Neel, C., Ollomo, B., Ayala, F. J., Arnathau, C., Etienne, L., Mpoudi-Ngole, E., Nkoghe, D., Leroy, E., Delaporte, E., Peeters, M. and Renaud, F. (2010). African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 107, 14581463.CrossRefGoogle ScholarPubMed
Putaporntip, C., Jongwutiwes, S., Thongaree, S., Seethamchai, S., Grynberg, P. and Hughes, A. L. (2010). Ecology of malaria parasites infection Southeast Asian macaques: evidence from cytochrome b sequences. Molecular Ecology 19, 34663476.CrossRefGoogle ScholarPubMed
Qari, S. H., Shi, Y. P., Pieniazek, N. J., Collins, W. E. and Lal, A. A. (1996). Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Molecular Phylogenetics and Evolution 6, 157165.CrossRefGoogle ScholarPubMed
Rich, S. M., Leendertz, F. H., Xu, G., LeBreton, M., Djoko, C. F., Aminake, M. N., Takang, E. E., Diffo, J. L., Pike, B. L., Rosenthal, B. M., Formenty, P., Boesch, C., Ayala, F. J. and Wolfe, N. D. (2009). The origin of malignant malaria. Proceedings of the National Academy of Sciences, USA 196, 1490214907.CrossRefGoogle Scholar
Ricklefs, R. E. and Outlaw, D. C. (2010). A molecular clock for malaria parasites. Science 329, 226229.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Roy, S. W. and Irimia, M. (2008). Origins of human malaria: rare genomic changes and full mitochondrial genomes confirm the relationship of Plasmodium falciparum to other mammalian parasites but complicate the origins of Plasmodium vivax. Molecular Biology and Evolution 25, 11921198.CrossRefGoogle ScholarPubMed
Sanderson, M. J. (1997). A nonparametric approach to estimating divergence timescales in the absence of rate constancy. Molecular Biology and Evolution 15, 12181231.CrossRefGoogle Scholar
Siddall, M. E. and Barta, J. R. (1992). Phylogeny of Plasmodium species: estimation and inference. Journal of Parasitology 78, 567568.CrossRefGoogle Scholar
Sorhannus, U. and Fox, M. (1999). Synonymous and nonsynonymous substitution rates in diatoms: a comparison between chloroplast and nuclear genes. Journal of Molecular Evolution 48, 209212.CrossRefGoogle ScholarPubMed
Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.CrossRefGoogle ScholarPubMed
Steiper, M. E. and Young, N. M. (2009). Primates (Primates) In The Timetree of Life (ed. Hedges, S. B. and Kumar, S.), pp. 482486. Oxford University Press, New York.CrossRefGoogle Scholar
Struhsaker, T. T. (1981). Forest and primate conservation in East Africa. African Journal of Ecology 19, 99114.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Tamura, K. and Nei, M. (1993). Estimation of the numberof nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512526.Google Scholar
Tanabe, K., Mita, T., Jombart, T., Eriksson, A., Horibe, S., Placpac, N., Ranford-Cartwright, L., Sawai, H., Sakihama, N., Ohmae, S., Nakamura, M., Ferreira, M. U., Escalante, A. A., Prugnolle, F., Björkman, A., Färnet, A., Kaneko, A., Horii, T., Manica, A., Kishino, H. and Balloux, F. (2010) Plasmodium falciparum accompanied the human expansion out of Africa. Current Biology 20, 17.CrossRefGoogle ScholarPubMed
Takezaki, N., Rzhetsky, A. and Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution 12, 823833.Google ScholarPubMed
The International SNP Map Working Group. (2002). A map of human genome sequence variation containing 1·42 million single nucleotide polymorphisms. Nature 409, 928933.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improvement of the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Volkman, S. K., Sabeti, P. C., DeCaprio, D., Neafsey, D. E., Schaffner, S. F., Milner, A. A. Jr., Daily, J. P., Sarr, O., Ndiaye, D., Ndir, O., Mboup, S., Duraisingh, M. T., Lukens, A., Derr, A., Stange-Thomann, N., Waggoner, S., Onofrio, R., Ziaugra, L., Mauceli, E., Gnerre, S., Jaffe, D. B., Zainoun, J., Wiegand, R. C., Birren, B. W., Hartl, D. L., Galagan, J. E., Lander, E. S. and Wirth, D. F. (2007). A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics 39, 113119.CrossRefGoogle ScholarPubMed
Warhurst, D. C. (1999). Drug resistance in Plasmodium falciparum malaria. Infection 27, S55S58.CrossRefGoogle ScholarPubMed
Waters, A. P., Higgins, D. G. and McCutchan, T. F. (1991). Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proceedings of the National Academy of Sciences, USA 88, 31403144.CrossRefGoogle ScholarPubMed
Wilgenbusch, J. C., Warren, D. L. and Swofford, D. L. (2004). AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://king2.scs.fsu.edu/CEBProjects/awty/awty_start.php.Google Scholar
Wolfe, N. D., Dunavan, C. P. and Diamond, J. (2007). Origins of major human infectious diseases. Nature 447, 279283.CrossRefGoogle ScholarPubMed
Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 15861591.CrossRefGoogle ScholarPubMed
Yang, Z. and Nielsen, R. (2000). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution 17, 3243.CrossRefGoogle ScholarPubMed
Yoeli, M. and Most, H. (1964). A study of Plasmodium berghei in Thamnomys surdaster, and in other experimental hosts. American Journal of Tropical Medicine and Hygiene 13, 659663.CrossRefGoogle ScholarPubMed
Supplementary material: File

Silva supplementary material

Table S1.doc

Download Silva supplementary material(File)
File 38.4 KB
Supplementary material: File

Silva supplementary material

Table S2.txt

Download Silva supplementary material(File)
File 51.6 KB
Supplementary material: File

Silva supplementary material

Table S3.doc

Download Silva supplementary material(File)
File 45.1 KB
Supplementary material: File

Silva supplementary material

Figure S1.txt

Download Silva supplementary material(File)
File 123.7 KB