Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T02:29:44.812Z Has data issue: false hasContentIssue false

Genetic variation in the mitochondrial cytochrome c oxidase subunit 1 within Progamotaenia festiva (Cestoda: Anoplocephalidae) from macropodid marsupials

Published online by Cambridge University Press:  27 April 2007

I. BEVERIDGE*
Affiliation:
Department of Veterinary Science, The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Werribee, Victoria 3030, Australia
S. SHAMSI
Affiliation:
Department of Veterinary Science, The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Werribee, Victoria 3030, Australia
M. HU
Affiliation:
Department of Veterinary Science, The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Werribee, Victoria 3030, Australia
N. B. CHILTON
Affiliation:
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5EZ, Canada
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Werribee, Victoria 3030, Australia
*
*Corresponding author: Department of Veterinary Science, The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Werribee, Victoria 3030, Australia. Fax: +61 3 97312366. E-mail: [email protected]

Summary

Genetic variation was examined in the anoplocephalid cestode Progamotaenia festiva, from Australian marsupials, in order to test the hypothesis that P. festiva, is a complex of sibling species and to assess the extent of host switching reported previously based on multilocus enzyme electrophoresis (MEE). Polymerase chain reaction (PCR)-based single-strand conformational polymorphism (SSCP) was used for the analysis of sequence variation in the cytochrome c oxidase subunit 1 (cox1) gene among 179 specimens of P. festiva (identified based on morphology and predilection site in the host) from 13 different host species, followed by selective DNA sequencing. Fifty-three distinct sequence types (haplotypes) representing all specimens were defined. Phylogenetic analyses of these sequence data (utilizing maximum parsimony and neighbour-joining methods) revealed 12 distinct clades. Other heterologous species, P. ewersi and P. macropodis, were used as outgroups and the remaining bile-duct inhabiting species, P. diaphana and P. effigia, were included in the analysis for comparative purposes. The latter 2 species were nested within the clades representing P. festiva. Most clades of P. festiva identified were restricted to a single host species; one clade primarily in Macropus robustus was also found in the related host species M. antilopinus in an area of host sympatry; another clade occurring primarily in M. robustus occurred also in additional kangaroo species, M. rufus and M. dorsalis. High levels of genetic divergence, the existence of distinct clades and their occurrence in sympatry provide support for the hypothesis that P. festiva represents a complex of numerous species, most of which, but not all, are host specific. Three distinct clades of cestodes were found within a single host, M. robustus, but there was no evidence of within-host speciation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, R. H. and Chilton, N. B. (1999). Multilocus enzyme electrophoresis: a valuable technique for providing answers to problems in parasite systematics. International Journal for Parasitology 29, 213253.Google Scholar
Archer, M. (1984). The Australian marsupial radiation. In Vertebrate Zoogeography and Evolution in Australasia: Animals in Space and Time (ed. Archer, M. and Clayton, G.), pp. 633808. Hesperian Press, Western Australia.Google Scholar
Ba, C. T., Wang, X. Q., Renaud, F., Euzet, L., Marchand, B. and De Meeüs, T. (1993). Diversity and specificity in cestodes of the genus Moniezia: genetic evidence. International Journal for Parasitology 23, 48534857.CrossRefGoogle ScholarPubMed
Baverstock, P. R., Adams, M. and Beveridge, I. (1985). Biochemical differentiation in bile duct cestodes and their marsupial hosts. Molecular Biology and Evolution 2, 321337.Google Scholar
Beveridge, I. (1976). A taxonomic revision of the Anoplocephalidae (Cestoda: Cyclophyllidea) of Australian marsupials. Australian Journal of Zoology, Supplementary Series, No. 44, 1110.Google Scholar
Beveridge, I. (1980). Progamotaenia Nybelin (Cestoda: Anoplocephalidae): new species, redescriptions and new host records. Transactions of the Royal Society of South Australia 104, 6779.Google Scholar
Beveridge, I., Chilton, N. B., Johnson, P. M., Smales, L. R., Speare, R. and Spratt, D. M. (1998). Helminth parasite communities of kangaroos and wallabies (Macropus spp. and Wallabia bicolor) from north and central Queensland. Australian Journal of Zoology 46, 473495.Google Scholar
Bowles, J., Blair, D. and McManus, D. P. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.CrossRefGoogle ScholarPubMed
Chilton, N. B., Gasser, R. B. and Beveridge, I. (1995). Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). International Journal for Parasitology 25, 647651.CrossRefGoogle Scholar
Chilton, N. B., O'Callaghan, M., Beveridge, I. and Andrews, R. H. (2007). Genetic markers to distinguish Moniezia expansa from M. benedeni (Cestoda: Anoplocephalidae) and evidence of the existence of cryptic species in Australia. Parasitology Research (in the Press).CrossRefGoogle Scholar
Flannery, T. F. (1989). Phylogeny of the Macropodoidea: a study in convergence. In Kangaroos, Wallabies and Rat-kangaroos (ed. Grigg, G., Jarman, P. and Hume, I.), pp. 164. Surrey Beatty and Sons, New South Wales.Google Scholar
Garey, J. R. and Walstenholme, D. R. (1989). Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA Ser AGN that contains a dihydrouridine arm replacement loop, and of serine specifying AGA and AGG codons. Journal of Molecular Evolution 28, 374387.Google Scholar
Gasser, R. B., Chilton, N. B., Hoste, H. and Beveridge, I. (1993). Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Research 21, 25252526.CrossRefGoogle ScholarPubMed
Hanselová, V., Šnabel, V., Spakulová, M., Králová, I. and Fagerholm, H.-P. (1995). A comparative study of the fish parasites Proteocephalus exiguus and P. percae (Cestoda: Proteocephalidae): morphology, isoenzymes and karyotype. Canadian Journal of Zoology 73, 11911198.CrossRefGoogle Scholar
Hu, M., Gasser, N. B., Chilton, N. B. and Beveridge, I. (2005). Genetic variation in the mitochondrial cytochrome c oxidase subunit 1 within three species of Progamotaenia (Cestoda: Anoplocephalidae) from macropodid marsupials. Parasitology 130, 117129.Google Scholar
Littlewood, D. T. J., Rohde, K. and Clough, K. A. (1997). Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology 27, 12891297.CrossRefGoogle ScholarPubMed
Nadler, S. A. (2002). Species delimitation and nematode biodiversity: phylogeny rules. Nematology 4, 615625.CrossRefGoogle Scholar
Pritchard, M. H. and Kruse, G. O. W. (1982). The Collection and Preservation of Animal Parasites. University of Nebraska Press, Lincoln, USA.Google Scholar
Renaud, F. and Gabrion, C. (1984). Polymorphisme enzymatique de populations du groupe Bothriocephalus scorpii (Mueller, 1776) (Cestoda, Pseudophyllidea). Etude de parasites de divers téléostéens des côtes du Finistère. Bulletin de la Société Française de Parasitologie 2, 9599.Google Scholar
Renaud, F., Gabrion, C. and Pasteur, N. (1983). Le complexe Bothriocephalus scorpii (Mueller, 1776): différeciation par électrophorèse enzymatique des espèces parasite du turbot (Psetta maxima) et de la barbue (Scophthalmus rhombus). Comptes rendus de l'Académie des Sciences (Paris) 296, 12781279.Google Scholar
Renaud, F., Gabrion, C. and Pasteur, N. (1986). Geographical divergence in Bothriocephalus (Cestoda) of fishes demonstrated by enzyme electrophoresis. International Journal for Parasitology 16, 553558.CrossRefGoogle Scholar
Simková, A., Morand, S., Jobet, E., Gelnar, M. and Verneau, O. (2004). Molecular phylogeny of congeneric monogenean parasites (Dactylogyrus): a case of intrahost speciation. Evolution 58, 10011018.Google ScholarPubMed
Šnabel, V., Hanselová, V., Matiucci, S., D'Amelio, S. and Paggi, L. (1996). Genetic polymorphism in Proteocephalus exiguus shown by enzyme electrophoresis. Journal of Helminthology 70, 345349.Google Scholar
Spratt, D. M., Beveridge, I. and Walter, E. L. (1991). A catalogue of Australasian monotremes and marsupials and their recorded helminth parasites. Records of the South Australian Museum, Monograph Series No. 1, 1105.Google Scholar
Swofford, D. L. (1999). PAUP*4.0b10. Sunderland: Sinauer Associates.Google Scholar
Thompson, R. C. A. and McManus, D. P. (2002). Towards a taxonomic revision of the genus Echinococcus. Trends in Parasitology 18, 452457.Google Scholar
Wickström, L. M., Haukisalmi, V., Varis, S., Hantula, J. and Henttonen, H. (2005). Molecular phylogeny and systematics of anoplocephaline cestodes in rodents and lagomorphs. Systematic Parasitology 62, 8399.CrossRefGoogle ScholarPubMed