Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T21:29:46.914Z Has data issue: false hasContentIssue false

Genetic susceptibility to malaria and other infectious diseases: from the MHC to the whole genome

Published online by Cambridge University Press:  06 April 2009

A. V. S. Hill
Affiliation:
Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Windmill Road, Oxford OX3 7BN, U.K.

Extract

There is substantial evidence that host genetic factors play a major role in determining the outcome of infection with many pathogens. Detailed analysis of malaria has identified twelve genes that affect susceptibility in various human populations. However, less attention has been paid to other major infectious diseases where twin studies have identified an important host genetic component to susceptibility. Recent progress in the analysis of the human genome offers exciting prospects for the mapping and identification of new susceptibility and resistance genes for common infectious diseases. Screening of the whole genome in affected sibling pair studies is now feasible by employing highly informative microsatellite markers. In addition, many polymorphic candidate genes have become available for analysis in case-control studies. It is proposed that these new genetic tools offer a powerful approach to the epidemiological analysis of many infectious diseases in humans and supersede traditional genetic approaches to identifying susceptibility genes in mouse models. Progress in characterizing the role of major histocompatibility genes in susceptibility to malaria and other infectious diseases is reviewed before outlining the methodologies for and progress in identifying non-MHC susceptibility genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, L., Cot, M., Mulder, L., Carnevale, P. & Feingold, J. (1992). Segregation analysis detects a major gene controlling blood infection levels in human malaria. American Journal of Human Genetics 50, 1308–17.Google Scholar
Abel, L. & Demenais, F. (1988). Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island. American Journal of Human Genetics 42, 256–66.Google Scholar
Adams, M. D., Kerlavage, A. R., Fields, C. & Venter, J. C. (1993). 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genetics 4, 256–67.CrossRefGoogle ScholarPubMed
Allison, A. C. (1964). Polymorphism and natural selection in human populations. Cold Spring Harbor Symposium on Quantitative Biology 29, 137–49.CrossRefGoogle ScholarPubMed
Almarri, A. & Batchelor, J. R. (1994). HLA and hepatitis B infection. Lancet 344, 1194–5.CrossRefGoogle ScholarPubMed
Babiker, H. A., Ranford-Cartwright, L. C., Currie, D., Charlwood, J. D., Billingsley, P., Teuscher, T. & Walliker, D. (1994). Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109, 413–21.CrossRefGoogle Scholar
Bennett, S., Allen, S. J., Olerup, P., Jackson, D. J., Wheeler, J. G., Rowe, P. A., Riley, E. M. & Greenwood, B. M. (1993). Human leucocyte antigen (HLA) and malaria morbidity in a Gambian community. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 286–7.CrossRefGoogle Scholar
Bothamley, G. H., Beck, J. S., Schreuder, G. M., D'Amaro, J., De Vries, R. R., Kardjito, T. & Ivanyi, J. (1989). Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. Journal of Infectious Diseases 159, 549–55.CrossRefGoogle Scholar
Brahmajoth, V., Pitchappan, R. M., Kakkanaiah, V. N., Sashidhar, M., Rajaram, K., Ramu, S., Palanimurugan, K., Paramasivan, C. N. & Prabhakar, R. (1991). Association of pulmonary tuberculosis and HLA in south India. Tubercle 72, 123–32.CrossRefGoogle Scholar
Cabrera, M., Shaw, M.-A., Sharples, C., Williams, H., Castes, M., Convit, J. & Blackwell, J. M. (1995). Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. Journal of Experimental Medicine 182, 1259–64.CrossRefGoogle ScholarPubMed
Carroll, M. C., Katzman, P., Alicot, E. M., Koller, B. H., Geraghty, D. E., Orr, H. T., Strominger, J. L. & Spies, T. (1987). Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proceedings of the National Academy of Sciences U.S.A. 84, 8535–9.CrossRefGoogle ScholarPubMed
Clarke, B. & Kirby, D. R. (1966). Maintenance of histocompatibility polymorphisms. Nature 211, 9991000.CrossRefGoogle ScholarPubMed
Conway, D. J., Greenwood, B. M. & McBride, J. S. (1991). The epidemiology of multiple-clone Plasrnodium falciparum infections in Gambian patients. Parasitology 103, 16.CrossRefGoogle ScholarPubMed
Copeman, J. B., Cucca, F., Hearne, C. M., Cornall, R. J., Reed, P. W., Ronningen, K. S., Undlien, D. E., Nistico, L., Buzzetti, R., Tosi, R. & Todd, J. A. (1995). Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31–q33. Nature Genetics 9, 80–5.CrossRefGoogle ScholarPubMed
D'Alfonso, S. & Richiardi, P. M. (1994). A polymorphic variation in a putative regulation box of the TNFA promoter region. Immunogenetics 39, 150–4.CrossRefGoogle Scholar
Davies, J. L., Kawaguchi, Y., Bennett, S. T., Copeman, J. B., Cordell, H. J., Pritchard, L. E., Reed, P. W., Cough, S. C., Jenkins, S. C., Palmer, S. M. & Todd, J. A. (1994). A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–6.CrossRefGoogle ScholarPubMed
Davenport, M. P. & Hill, A. V. S. (1996). Reverse immunogenetics: from HLA-disease associations to vaccine candidates. Molecular Medicine Today 2, 3845CrossRefGoogle ScholarPubMed
De Vries, R. R., Fat, R. F., Nijenhuis, L. E. & Van Rood, J. J. (1976). HLA-linked genetic control of host response to Mycobacterium leprae. Lancet 2, 1328–30.CrossRefGoogle ScholarPubMed
Gillespie, J. H. (1985). The interaction of genetic drift and mutation with selection in a fluctuating environment. Theoretical and Population Biology 27, 222–37.CrossRefGoogle Scholar
Gotch, F., McAdam, S. N., Allsopp, C. E., Gallimore, A., Elvin, J., Kieny, M. P., Hill, A. V. S., McMichael, A. J. & Whittle, H. C. (1993). Cytotoxic T cells in HIV2 seropositive Gambians. Identification of a HIV-2 virus-specific MHC-restricted peptide epitope. Journal of Immunology 151, 3361–9.CrossRefGoogle ScholarPubMed
Gould, S. J. & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London Series B 205, 581–98.Google Scholar
Gupta, S. & Hill, A. V. S. (1995). Dynamic interactions in malaria: host heterogeneity meets parasite polymorphism. Proceedings of the Royal Society of London Series B 261, 271–7.Google ScholarPubMed
Gyapay, G., Morissette, J., Vignal, A., Dib, C., Fizames, C., Millasseau, P., Marc, S., Bernardi, G., Lathrop, M. & Weissenbach, J. (1994). The 1993–94 Genethon human genetic linkage map. Nature Genetics 7, 246339.CrossRefGoogle ScholarPubMed
Hill, A. V. S. (1992). Malaria resistance genes; a natural selection. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 225–6.CrossRefGoogle Scholar
Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., McMichael, A. J. & Greenwood, B. M. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595600.CrossRefGoogle ScholarPubMed
Hill, A. V. S., Elvin, J., Willis, A. C., Aidoo, M., Allsopp, C. E. M., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M., Townsend, A. R., McMichael, A. J. & Whittle, H. C. (1992). Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–9.CrossRefGoogle ScholarPubMed
Itescu, S., Mathur, Wagh U., Skovron, M. L., Brancato, L. J., Marmor, M., Zeleniuch, Jacquotte A. & Winchester, R. (1992). HLA-B35 is associated with accelerated progression to AIDS. Journal of the Acquired Immunodeficiency Syndrome 5, 3745.Google ScholarPubMed
Jepson, A. P., Banya, W. A., Sisay, Joof F., Hassan, King M., Bennett, s. & Whittle, H. C. (1995). Genetic regulation of fever in Plasrnodium falciparum malaria in Gambian twin children. Journal of Infectious Diseases 172, 316–9.CrossRefGoogle ScholarPubMed
Kaslow, R. A., Duquesnoy, R., Vanraden, M., Kingsley, L., Marrari, M., Friedman, H., Su, S., Saah, A. J., Detels, R., Phair, J. et al. , (1990). Al, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection. A report from the Multicenter AIDS Cohort Study. Lancet 335, 927–30.CrossRefGoogle Scholar
Kelly, R. J., Rouquier, S., Giorfi, D., Lennon, G. G. & Lowe, J. B. (1995). Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. Journal of Biological Chemistry 270, 4640–9.CrossRefGoogle Scholar
Khomenko, A. G., Litvinov, V. I., Chukanova, V. P. & Pospelov, L. E. (1990). Tuberculosis in patients with various HLA phenotypes. Tubercle 71, 187–92.CrossRefGoogle ScholarPubMed
Klein, J. (1987). Origin of major histocompatibility complex polymorphism: the-trans-species hypothesis. Human Immunology 19, 155–62.CrossRefGoogle ScholarPubMed
Lalvani, A., Aidoo, M., Allsopp, C.E., Plebanski, M., Whittle, J. C. & Hill, A. V. (1994). An HLA-based approach to the design of a CTL-inducing vaccine against Plasmodium falciparum. Research in Immunology 145, 461–8.CrossRefGoogle Scholar
McGuire, W., Hill, A. V., Allsopp, C. E., Greenwood, B. M. & Kwiatkowski, D. (1994). Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–10.CrossRefGoogle ScholarPubMed
Murphy, P. M. (1993). Molecular mimicry and the generation of host defense protein diversity. Cell 72, 823–6.CrossRefGoogle ScholarPubMed
Potts, W. K., Manning, C. J., Wakeland, E. K. (1991) Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–21.CrossRefGoogle ScholarPubMed
Rani, R., Fernandez-Vina, M. A., Zaheer, S. A., Beena, K. R. & Stastny, P. (1993). Study of HLA class II allele by PCR oligotyping in leprosy patients from north India. Tissue Antigens 42, 133–7.CrossRefGoogle ScholarPubMed
Reiner, S. L. & Locksley, R. M. (1995). The regulation of immunity to Leishmania major. Annual Review of Immunology 13, 151–77.CrossRefGoogle ScholarPubMed
Riley, E. M., Olerup, O., Bennett, S., Rowe, P., Allen, S. J., Blackman, M. J., Troye-Blomberg, M., Holder, A. A. & Greenwood, B. M. (1992). MHC and malaria: the relationship between HLA class II alleles and immune responses to Plasmodium falciparum. International Immunology 4, 1055–63.CrossRefGoogle ScholarPubMed
Risch, N. (1990). Linkage strategies for genetically complex traits. II. The power of affected relative pairs. American Journal of Human Genetics 46, 229–1.Google ScholarPubMed
Risch, N., Ghosh, s. & Todd, J. A. (1993). Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics 53, 702–14.Google ScholarPubMed
Ruwende, C., Khoo, S. C., Snow, R. W., Yates, S. N., Kwiatkowski, D., Gupta, S., Warn, P., Allsopp, C. E., Gilbert, S. C., Peschu, N., Newbold, C. I. N., Greenwood, B. M., Marsh, K. & Hill, A. V. S. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–9.CrossRefGoogle ScholarPubMed
Schofield, A. E., Reardon, D. M. & Tanner, M. J. (1992). Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 355, 836–8.CrossRefGoogle ScholarPubMed
Singh, S. P., Mehra, N. K., Dingley, H. B., Pande, J. N. & Vaidya, M. C. (1983). Human leukocyte antigen (HLA)-linked control of susceptibility to pulmonary tuberculosis and association with HLA-DR types. Journal of Infectious Diseases 148, 676–81.CrossRefGoogle ScholarPubMed
Spielman, R. S., McGinnis, R. E. & Ewens, W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics 52, 506–16.Google ScholarPubMed
Steel, C. M., Ludlam, C. A., Beatson, D., Peutherer, J. F., Cuthbert, R. J., Simmonds, P., Morrison, H. & Jones, M. (1988). HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet 1, 1185–8.CrossRefGoogle ScholarPubMed
Stern, L. J. & Wiley, D. C. (1994). Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–51.CrossRefGoogle Scholar
Takahata, N. & Nei, M. (1990). Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–78.CrossRefGoogle ScholarPubMed
Thursz, M. R., Kwiatkowski, D., Allsopp, C. E., Greenwood, B. M., Thomas, H. C. & Hill, A. V. (1995). Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. New England Journal of Medicine 332, 1065–9.CrossRefGoogle ScholarPubMed
Todd, J. A. (1995). Genetic analysis of type 1 diabetes using whole genome approaches. Proceedings of the National Academy of Sciences U.S.A. 92, 8560–5.CrossRefGoogle ScholarPubMed
Todd, J. R., West, B. C. & McCdonald, J. C. (1990). Human leukocyte antigen and leprosy: study in northern Louisiana and review. Reviews of Infectious Diseases 12, 6374.CrossRefGoogle ScholarPubMed
Van Eden, W., De Vries, R. R., Mehra, N. K., Vaidya, M. C., D'Amaro, J. & Van Rood, J. J. (1980). HLA segregation of tuberculoid leprosy: confirmation of the DR2 marker. Journal of Infectious Diseases 141, 693701.CrossRefGoogle ScholarPubMed
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–85.CrossRefGoogle ScholarPubMed
Vogel, F. & Motulsky, A. G. (1986). Human Genetics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wakelin, D. & Blackwell, J. M. (1988). (eds) Genetics of Resistance to Bacterial and Parasitic Infections. London: Taylor and Francis.Google Scholar
Wilson, A. G., Symons, J. A., McDowell, T. L., Di Giovine, F. S. & Duff, G. W. (1994). Effects of a TNFα promoter base transition on transcriptional activity. British Journal of Rheumatology 33 (supplement 1), 89.Google Scholar