Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T01:04:30.179Z Has data issue: false hasContentIssue false

Genetic susceptibility to leishmanial infections: studies in mice and man

Published online by Cambridge University Press:  06 April 2009

J. M. Blackwell
Affiliation:
University of Cambridge Clinical School, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK

Summary

Two important recent advances in Leishmania immunology are: (i) the demonstration of a dramatic dichotomy in T helper 1 versus T helper 2 subset expansion leading to protection versus disease exacerbation; and (ii) analysis of the macrophage activation pathways leading to enhanced intracellular killing of parasites, in particular the tumour necrosis factor α (TNFα)-dependent sustained induction of the inducible nitric oxide synthase gene (Nos2) leading to the generation of large amounts of nitric oxide (NO). Given the broad spectrum of disease phenotypes in human leishmaniasis, one might predict that a genetic defect at any key point in this macrophage activation pathway and/or in pathways leading to activation of different T cell subsets, and the latter may be a pleiotropic effect of the former, will contribute to disease susceptibility. By studying disease in genetically-defined inbred mouse strains, it has been possible to identify 5 regions of the murine genome carrying leishmanial susceptibility genes. The genes include: (i) Scl-2 (mouse chromosme 4/human chromosome 9p; candidate Janus tyrosine kinase 1) controlling a unique no lesion growth resistance phenotype to Leishmania mexicana; (ii) Scl-1 (distal mouse chromosome 11/human 17q; candidates Nos2, Sigje, MIP1α, MIP1β) controlling healing versus non-healing responses to L. major; (iii) the ‘T helper 2’ cytokine gene cluster (proximal murine chromosome 11/human 5p; candidates IL4,5,9) controlling later phases of L. major infection; (iv) the major histocompatibility complex (MHC: H-2 in mouse, HLA in man: mouse chromosome 17/human 6p; candidates class II and class III including TNFα/β genes); and (v) Nramp1, the positionally cloned candidate for the murine macrophage resistance gene Ity/Lsh/Bcg (mouse chromosome 1/human 2q35). This review examines these 5 regions and the candidate genes within them, reflecting on their current status as candidates for human disease susceptibility genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, L. J., French, M. A. H. & Dawkins, R. L. (1993). Polymorphic MHC ancestral haplotypes affect the activity of tumour necrosis factor-alpha. Clinical and Experimental Immunology 92, 1418.CrossRefGoogle ScholarPubMed
Barral-Netto, M., Badaro, R., Barral, A., Albeida, R. P., Santos, S. B., Badaro, F., Pedral-Sampaio, D., Carvalho, E. M., Falcoff, E. & Falcoff, R. (1991). Tumor necrosis factor (cachectin) in human visceral leishmaniasis. Journal of Infectious Diseases 163, 853–7.CrossRefGoogle ScholarPubMed
Barton, C. H., White, J. K., Roach, T. I. A. & Blackwell, J. M. (1994). NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. Journal of Experimental Medicine 179, 1683–7.CrossRefGoogle ScholarPubMed
Barton, C. H., Whitehead, S. H. & Blackwell, J. M. (1995). Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Molecular Medicine 1, 267–79.CrossRefGoogle ScholarPubMed
Bendtzen, K., Morling, N., Fomsgaard, A., Svenson, M., Jakobsen, B., Odum, N. & Svejgaard, A. (1988). Association between HLA-DR2 and production of tumour necrosis factor α and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scandinavian Journal of Immunology 28, 599606.CrossRefGoogle ScholarPubMed
Blackwell, J. M. (1985). Genetic control of discrete phases of complex infections: Leishmania donovani as a model. Progress in Leukocyte Biology 3, 3149.Google Scholar
Blackwell, J. M. (1988). Protozoan infections. In Genetics of Resistance to Bacterial and Parasitic Infection (ed. Wakelin, D. & Blackwell, J. M.), pp. 103–51. London: Taylor & Francis.Google Scholar
Blackwell, J. M. (1989). (Convenor, 27th Forum in Immunology). The macrophage resistance gene Lsh/Ity/Bcg. Research in Immunology 140, 767828.CrossRefGoogle Scholar
Blackwell, J. M., Barton, C. H., White, J. K., Roach, T. I. A., Shaw, M.-A., Whitehead, S. H., Mock, B. A., Searle, S., Williams, H. & Baker, A.-M. (1994). Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunology Letters 43, 99107.CrossRefGoogle ScholarPubMed
Blackwell, J. M., Barton, C. H., White, J. K., Searle, S., Baker, A.-M., Williams, H. & Shaw, M.-A. (1995). Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. Molecular Medicine 1, 194205.CrossRefGoogle ScholarPubMed
Blackwell, J., Freeman, J. & Bradley, D. (1980). Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 283, 72–4.CrossRefGoogle ScholarPubMed
Blackwell, J. M., Hale, C., Roberts, M. B., Ulczak, O. M., Liew, F. Y. & Howard, J. G. (1985). An H-11-linked gene has a parallel effect on Leishmania major and L. donovani infections in mice. Immunogenetics 21, 385–95.CrossRefGoogle Scholar
Blackwell, J. M., Roach, T. I. A., Atkinson, S. E., Ajioka, J. W., Barton, c. H. & Shaw, M.-A. (1991). Genetic regulation of macrophage priming/activation: the Lsh gene story. Immunology Letters 30, 241–8.CrossRefGoogle ScholarPubMed
Blackwell, J. M., Roberts, C. W., Roach, T. I. A. & Alexander, J. (1994). Influence of macrophage resistance gene Lsh/Ity/Bcg (candidate Nramp) on Toxoplasma gondii infection in mice. Clinical and Experimental Immunology 97, 107–12.CrossRefGoogle ScholarPubMed
Blackwell, J. M. & Roberts, M. B. (1987). Immunomodulation of murine visceral leishmaniasis by administration of monoclonal anti-Ia antibodies: differential effects of anti-I-A vs anti-I-E antibodies. European Journal of Immunology 17, 1669–72.CrossRefGoogle ScholarPubMed
Bradley, D. J. (1974). Genetic control of natural resistance to Leishmania donovani. Nature 250, 353–4.CrossRefGoogle ScholarPubMed
Bradley, D. J. (1977). Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clinical and Experimental Immunology 30, 130–40.Google ScholarPubMed
Bradley, D. J., Taylor, B. A., Blackwell, J., Evans, E. P. & Freeman, J. (1979). Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clinical and Experimental Immunology 37, 714.Google ScholarPubMed
Cabrera, M., Shaw, M.-A., Sharples, C., Williams, H., Castes, M., Convit, J. & Blackwell, J. M. (1995). Polymorphism in TNF genes associated with mucocutaneous leishmaniasis. Journal of Experimental Medicine, 182, 1259–64.CrossRefGoogle ScholarPubMed
Caceres-Dittmar, G., Tapia, F. J., Sanchez, M. A., Yamamura, M., Uyemura, K., Modlin, R. L., Bloom, B. R. & Convit, J. (1993). Determination of the cytokine profile in American cutaneous leishmaniasis using the polymerase chain reaction. Clinical and Experimental Immunology 91, 500–5.CrossRefGoogle ScholarPubMed
Castes, M., Trujillo, D., Rojas, M. E., Fernandez, C. T., Araya, L., Cabrera, M., Blackwell, J. & Convit, J. (1993). Serum levels of tumor necrosis factor in patients with American cutaneous leishmaniasis. Biological Research 26, 233–8.Google ScholarPubMed
Cellier, M., Govoni, G., Vidal, S., Kwan, T., Groulx, N., Liu, J., Sanchez, F., Skamene, E., Schurr, E. & Gros, P. (1994). Human natural resistance-associated macrophage protein: cDNA cloning chromosomal mapping, genomic organization, and tissue-specific expression. Journal of Experimental Medicine 180, 1741–52.CrossRefGoogle ScholarPubMed
Doull, I. J. M., Lawrence, S., Watson, M., Begishvili, T., Beasley, R. W., Lampe, F., Holgate, S. T. & Morton, N. E. (1996). Allelic association of gene markers on chromosomes 5q and llq with atropy and bronchial hyperreponsiveness. American Journal of Respiratory and Critical Care Medicine, 1996 (in press).CrossRefGoogle Scholar
Green, S. J., Crawford, R. M., Hockmeyer, J. T., Meltzer, M. S. & Nacy, C. A. (1990). Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-α. Journal of Immunology 145, 4290–7.CrossRefGoogle ScholarPubMed
Ihle, J. N. & Kerr, I. M. (1995). Jaks and Stats in signalling by the cytokine receptor superfamily. Trends in Genetics 11, 6974.CrossRefGoogle ScholarPubMed
Jacob, C. O., Fronek, Z., Lewis, G. D., Koo, M., Hansen, J. A. & McDevitt, H. O. (1990). Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor α: relevance to genetic predisposition to systemic lupus erythematosus. Proceedings of the National Academy of Sciences, USA 87, 1233–7.CrossRefGoogle ScholarPubMed
Kaye, P. M., Cooke, A., Lund, T., Wattie, M. & Blackwell, J. M. (1992). Altered course of visceral leishmaniasis in mice expressing transgenic I-E molecules. European Journal of Immunology 22, 357–64.CrossRefGoogle ScholarPubMed
Lara, M. L., Layrisse, Z., Scorza, J. V., Garcia, E., Stoikow, Z., Granados, J. & Bias, W. (1991). Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela. Human Immunology 30, 129–35.CrossRefGoogle ScholarPubMed
Liew, F. Y., Li, Y. & Millott, S. (1990). Tumour necrosis factor (TNF-alpha) in leishmaniasis. II. TNF-alpha induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology 71, 556–9.Google ScholarPubMed
Liew, F. Y., Li, Y., Moss, D., Parkinson, C., Rogers, M. V. & Moncada, S. (1991). Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. European Journal of Immunology 21, 3009–14.CrossRefGoogle ScholarPubMed
Liu, J., Fujiwara, T. M., Buu, N. T., Sanchez, F. O., Cellier, M., Paradis, A. J., Frappier, D., Skamene, E., Gros, P., Morgan, K. & Schurr, E. (1995). Identification of polymorphisms and sequence variants in human homologue of the mouse natural resistance-associated macrophage protein gene. American Journal of Human Genetics 56, 845–53.Google ScholarPubMed
Locksley, R. M. & Scott, P. (1991). Helper T-cell subsets in mouse leishmaniasis induction, expansion and effector function. Immunology Today 12, A58A61.CrossRefGoogle ScholarPubMed
Mock, B., Blackwell, J., Hilgers, J., Potter, M. & Nacy, C. (1993). Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice. European Journal of Immunogenetics 20, 335–48.CrossRefGoogle ScholarPubMed
Mock, B. A., Krall, M. M., Byrd, L. G., Chin, H., Barton, C. H., Charles, I., Liew, F. Y. & Blackwell, J. (1994). The inducible form of nitric oxide synthase (NOS2) isolated from murine macrophages maps near the nude mutation on mouse chromosome 11. European Journal of Immunogenetics 21, 231–8.CrossRefGoogle ScholarPubMed
Pirmez, C., Cooper, C., Paes-Oliveira, M., Schubach, A., Torigian, V. K. & Modlin, R. L. (1990). Immunologic responsiveness in American cutaneous leishmaniasis lesions. Journal of Immunology 145, 3100–4.CrossRefGoogle ScholarPubMed
Plant, J. & Glynn, A. A. (1974). Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature 248, 345–7.CrossRefGoogle ScholarPubMed
Pociot, F., Briant, L., Jongeneel, C. V., Mölvig, J., Worsaae, H., Abbal, M., Thomsen, M., Nerup, J. & Cambon-Thomsen, A. (1993). Association of tumour necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-α and TNF-β by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. European Journal of Immunology 23, 224–31.CrossRefGoogle Scholar
Pociot, F., Mölvig, J., Wogensen, L., Worsaae, H., Dalboge, H., Baek, L. & Nerup, J. (1991). A tumour necrosis factor beta gene polymorphism in relation to monokine secretion and insulin-dependent diabetes mellitus. Scandinavian Journal of Immunology 33, 3749.CrossRefGoogle ScholarPubMed
Radzioch, D., Kramnik, I. & Skamene, E. (1995). Molecular mechanisms of natural resistance to mycobacterial infections. Circulatory Shock 44, 115–20.Google Scholar
Roach, T. I., Kiderlen, A. F. & Blackwell, J. M. (1991). Role of inorganic nitrogen oxides and tumor necrosis factor-alpha in killing Leishmania donovani amastigotes in gamma interferon-lipopolysaccharide-activated macrophages from Lshg and Lshr congenic mouse strains. Infection and Immunity 59, 3935–44.CrossRefGoogle Scholar
Roberts, M., Alexander, J. & Blackwell, J. M. (1990). Genetic analysis of Leishmania mexicana infection in mice: single gene (Scl-2) controlled predisposition to cutaneous lesion development. Journal of Immunogenetics 17, 89100.CrossRefGoogle ScholarPubMed
Roberts, M., Mock, B. A. & Blackwell, J. M. (1993). Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. European Journal of Immunogenetics 20, 349–62.CrossRefGoogle ScholarPubMed
Rodrigues, V., Cheah, V. P. Y., Ray, K. & Chia, W. (1995). Malvolio, the Drosophila homologue of mouse Nramp1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour. EMBO Journal 14, 3007–20.CrossRefGoogle ScholarPubMed
Shaw, M.-A., Clayton, D., Atkinson, S. E., Williams, H., Miller, N., Sibthorpe, D. & Blackwell, J. M. (1996). Linkage of rheumatoid arthritis to the candidate gene NRAMP1 on 2q35. Journal of Medical Genetics (in press).CrossRefGoogle Scholar
Skamene, E. (1994). The Beg gene story. Immunobiology 191, 451–60.CrossRefGoogle Scholar
Skamene, E., Gros, P., Forget, A., Kongshavn, P. A. L., St. Charles, C. & Taylor, B. A. (1982). Genetic regulation of resistance to intracellular pathogens. Nature 297, 506–9.CrossRefGoogle ScholarPubMed
Vidal, S., Tremplay, M. L., Govoni, G., Gauthier, S., Sebastiani, G., Malo, D., Skamene, E., Olivier, M., Jothy, s. & Gros, P. (1995). The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. Journal of Experimental Medicine 182, 655–66.CrossRefGoogle ScholarPubMed
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–85.CrossRefGoogle ScholarPubMed
Vouldoukis, I., Riveros-Moreno, V., Dugas, B., Ouaaz, F., Becherel, P., Debre, P., Salvador, M. & Mossalayi, M. D. (1995). The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc&RII/CD23 surface antigen. Proceedings of the National Academy of Sciences, USA 92, 7804–8.CrossRefGoogle ScholarPubMed
Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S. & Liew, F. Y. (1995). Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–11.CrossRefGoogle ScholarPubMed
West, A. H., Clark, D. J., Martin, J., Neupert, W., Hartl, F. U. & Horwich, A. L. (1992). Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitocondrial processing enhancing protein. Journal of Biological Chemistry 267, 24625–33.CrossRefGoogle Scholar
White, J.K., Shaw, M.-A., Barton, C. H., Cerretti, D. P., Williams, H., Mock, B. A., Carter, N. P., Peacock, C. S. & Blackwell, J. M. (1994). Genetic and physical mapping of 2q35 in the region of NRAMP and IL8R genes: identification of a polymorphic repeat in exon 2 of NRAMP. Genomics 24, 295302.CrossRefGoogle ScholarPubMed
Wilson, A. G., Symons, J. A., McDowell, T. L., Di Giovine, F. S. & Duff, G. W. (1994). Effects of a tumour necrosis factor (TNFα) promoter base transition on transcriptional activity [Abstract]. British Journal of Rheumatology 33, 39.Google Scholar
Yamamura, M., Uyemura, K., Deans, R. J., Weinberg, K., Rea, T. H., Bloom, B. R. & Modlin, R. L. (1991). Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254, 277–9.CrossRefGoogle ScholarPubMed