Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T16:20:36.636Z Has data issue: false hasContentIssue false

Genetic and environmental determinants of host use in the trematode Maritrema novaezealandensis (Microphallidae)

Published online by Cambridge University Press:  21 July 2010

ANSON V. KOEHLER*
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
ANNA G. GONCHAR
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
ROBERT POULIN
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
*
*Corresponding author: Tel: +64 03 479 5848. Fax: +64 03 479 7584. E-mail: [email protected]

Summary

Factors constraining host specificity are poorly understood. Intraspecific variation in host preferences in generalist parasites may reveal which factors affect patterns of host use, and thus the evolution of specialization. Here, laboratory experiments examined genetic variation in host preferences and the effect of a refugium against infection on host use. Firstly, 6 cercarial clones of the trematode Maritrema novaezealandensis (ranging widely in heterozygosities) were exposed simultaneously to 2 alternative hosts, the amphipods Heterophoxus stephenseni and Paracalliope novizealandiae, to assess host preferences and fitness correlations with parasite heterozygosity. All clones showed a distinct preference for H. stephenseni, though the extent of this preference varied among clones. No clear association was found between heterozygosity and either parasite infection success or preference for a particular host. Secondly, cercariae were exposed to the same 2 amphipods in both the presence and absence of sand (refugium for H. stephenseni). Without sand, infection levels were significantly higher in H. stephenseni than in P. novizealandiae. With sand, H. stephenseni was able to hide, offsetting the parasite's intrinsic preferences for this host. These results demonstrate the existence of genetic variation in host preferences, as well as the effect of environmental variables on observed patterns of host use.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnard, L. J. (1972). The marine fauna of New Zealand: algae-living littoral Gammaridea (Crustacea Amphipoda). Memoirs of the New Zealand Oceanographic Institute 62, 1215.Google Scholar
Bryan-Walker, K., Leung, T. L. F. and Poulin, R. (2007). Local adaptation of immunity against a trematode parasite in marine amphipod populations. Marine Biology 152, 687695.CrossRefGoogle Scholar
Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. and Sheldon, B. C. (2009). A quantitative review of heterozygosity-fitness correlations in animal populations. Molecular Ecology 18, 27462765.CrossRefGoogle ScholarPubMed
Cleaveland, S., Laurenson, M. K. and Taylor, L. H. (2001). Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London, Series B 356, 991999.CrossRefGoogle ScholarPubMed
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago, IL, USA.Google Scholar
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287, 443449.CrossRefGoogle ScholarPubMed
Detwiler, J. T., Bos, D. H. and Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611620.CrossRefGoogle ScholarPubMed
Detwiler, J. T. and Minchella, D. J. (2009). Intermediate host availability masks the strength of experimentally-derived colonisation patterns in echinostome trematodes. International Journal for Parasitology 39, 585590.CrossRefGoogle ScholarPubMed
Downes, B. J. (1986). Guild structure in water mites (Unionicola spp.) inhabiting freshwater mussels: choice, competitive exclusion and sex. Oecologia 70, 457465.CrossRefGoogle ScholarPubMed
Euzet, L. and Combes, C. (1980). Les problèmes de l'espèce chez les animaux parasites. Mémoires de la Société Zoologique Française 40, 239285.Google Scholar
Fenton, A. and Hudson, P. J. (2002). Optimal infection strategies: should macroparasites hedge their bets? Oikos 9, 92101.CrossRefGoogle Scholar
Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2004). Intensity-dependent mortality of Paracalliope novizealandiae (Amphipoda : Crustacea) infected by a trematode: experimental infections and field observations. Journal of Experimental Marine Biology and Ecology 311, 253265.CrossRefGoogle Scholar
Fredensborg, B. L. and Poulin, R. (2005). Larval helminths in intermediate hosts: Does competition early in life determine the fitness of adult parasites? International Journal for Parasitology 35, 10611070.CrossRefGoogle ScholarPubMed
Fry, J. D. (1990). Trade-offs in fitness on different hosts: Evidence from a selection experiment with a phytophagous mite. The American Naturalist 136, 569.CrossRefGoogle Scholar
Hansson, B. and Westerberg, L. (2002). On the correlation between heterozygosity and fitness in natural populations. Molecular Ecology 11, 24672474.CrossRefGoogle ScholarPubMed
Hurley, D. E. (1954). Studies on the New Zealand amphipodan fauna No. 3. The family Phoxocephalidae. Transactions of the Royal Society of New Zealand 81, 579599.Google Scholar
Jaenike, J. and Dombeck, I. (1998). General-purpose genotypes for host species utilization in a nematode parasite of Drosophila. Evolution 52, 832840.CrossRefGoogle Scholar
Johnson, P. T. J., Dobson, A., Lafferty, K. D., Marcogliese, D. J., Memmott, J., Orlofske, S. A., Poulin, R. and Thieltges, D. W. (2010). When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology & Evolution 25, 362371.CrossRefGoogle ScholarPubMed
Keeney, D. B., Waters, J. M. and Poulin, R. (2006). Microsatellite loci for the New Zealand trematode Maritrema novaezealandensis. Molecular Ecology Notes 6, 10421044.CrossRefGoogle Scholar
Koehler, A. V. and Poulin, R. (2010). Host partitioning by parasites in an intertidal crustacean community. Journal of Parasitology (in the Press). doi: 10.1645/GE-2460.1.CrossRefGoogle Scholar
Martorelli, S. R., Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2004). Description and proposed life cycle of Maritrema novaezealandensis N. sp (microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. Journal of Parasitology 90, 272277.CrossRefGoogle Scholar
Molecular Ecology Resources Primer Development Consortium, Abercrombie, L. G., Anderson, C. M., Baldwin, B. G., Bang, I. C., Beldade, R., Bernardi, G., Boubou, A., Branca, A., Bretagnolle, F., Bruford, M. W., Buonamici, A., Burnett, R. K., Canal, D., Cardenas, H., Caullet, C., Chen, S. Y., Chun, Y. J., Cossu, C., Crane, C. F., Cros-Arteil, S., Cudney-Bueno, R., Danti, R., Davila, J. A., Della Rocca, G., Dobata, S., Dunkle, L. D., Dupas, S., Faure, N., Ferrero, M. E., Fumanal, B., Gigot, G., Gonzalez, I., Goodwin, S. B., Groth, D., Hardesty, B. D., Hasegawa, E., Hoffman, E. A., Hou, M. L., Jamsari, A. F. J., Ji, H. J., Johnson, D. H., Joseph, L., Justy, F., Kang, E. J., Kaufmann, B., Kim, K. S., Kim, W. J., Koehler, A. V., Laitung, B., Latch, P., Liu, Y. D., Manjerovic, M. B., Martel, E., Metcalfe, S. S., Miller, J. N., Midgley, J. J., Migeon, A., Moore, A. J., Moore, W. L., Morris, V. R. F., Navajas, M., Navia, D., Neel, M. C., De Nova, P. J. G., Olivieri, I., Omura, T., Othman, A. S., Oudot-Canaff, J., Panthee, D. R., Parkinson, C. L., Patimah, I., Perez-Galindo, C. A., Pettengill, J. B., Pfautsch, S., Piola, F., Potti, J., Poulin, R., Raimondi, P. T., Rinehart, T. A., Ruzainah, A., Sarver, S. K., Scheffler, B. E., Schneider, A. R. R., Silvain, J. F., Azizah, M. N. S., Springer, Y. P., Stewart, C. N., Sun, W., Tiedemann, R., Tsuji, K., Trigiano, R. N., Vendramin, G. G., Wadl, P. A., Wang, L., Wang, X., Watanabe, K., Waterman, J. M., Weisser, W. W., Westcott, D. A., Wiesner, K. R., Xu, X. F., Yaegashi, S. and Yuan, J. S. (2009). Permanent Genetic Resources added to Molecular Ecology Resources database 1 January 2009–30 April 2009. Molecular Ecology Resources 9, 13751379.Google ScholarPubMed
Oakden, J. M. (1984). Feeding and substrate preference in five species of phoxocephalid amphipods from central California. Journal of Crustacean Biology 4, 233247.CrossRefGoogle Scholar
Paterson, S. (2005). No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti (Nematoda) infections. International Journal for Parasitology 35, 15391545.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites. 2nd Edn.Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Poulin, R. and Keeney, D. B. (2008). Host specificity under molecular and experimental scrutiny. Trends in Parasitology 24, 2428.CrossRefGoogle ScholarPubMed
Thieltges, D. W., Jensen, K. T. and Poulin, R. (2008). The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407426.CrossRefGoogle ScholarPubMed
Van Valen, L. (1965). Morphological variation and width trun of ecological niche. The American Naturalist 99, 377390.CrossRefGoogle Scholar
Ward, S. A. (1992). Assessing functional explanations of host-specificity. The American Naturalist 139, 883891.CrossRefGoogle Scholar