Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T08:23:57.819Z Has data issue: false hasContentIssue false

Genes within the major histocompatibility complex of the guinea pig influence susceptibility to Trichostrongylus colubriformis infection

Published online by Cambridge University Press:  06 April 2009

A. F. Geczy
Affiliation:
N. S. W. Red Cross Blood Transfusion Service, 153 Clarence Street, Sydney 2000, N. S. W., Australia
T. L. W. Rothwell
Affiliation:
Department of Veterinary Pathology, University of Sydney, N. S. W. 2006, Australia

Summary

The influence of genes in the major histocompatibility complex (MHC) of the guinea pig on the susceptibility to infection with the parasitic nematode Trichostrongylus colubriformis was investigated. Back-cross analysis of 2 lines of guinea pigs suggests that genes that map in or near the I region of the guinea pig MHC influence susceptibility to infection by the parasite. However, other genes, possibily not linked to the guinea pig MHC, may also be required for the full expression of susceptibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behnke, J. M. & Wakelin, D. (1977). Nematospiroides dubius: stimulation of acquired immunity in inbred strains of mice. Journal of Helminthology 51, 167–76.CrossRefGoogle ScholarPubMed
Geczy, A. F. & DeWeck, A. L. (1977 a). Molecular basis of T cell dependent genetic control of the immune response in the guinea pig. Progress in Allergy 22, 147213.Google ScholarPubMed
Geczy, A. F. & DeWeck, A. L. (1977 b). Histocompatibility antigens and genetic control of the immune response in guinea-pigs. V. Evidence from further breeding studies for the polygenic control of the cellular immune response to structurally unrelated antigens in the guinea-pig. Immunogenetics 4, 367–70.CrossRefGoogle ScholarPubMed
Guczy, A. F., DeWack, A. L., Schwartz, B. D. & Shevach, E. M. (1975). The major histocompatibility complex of the guinea pig. I. Serologic and genetic studies. Journal of Immunology 115, 1704–10.CrossRefGoogle Scholar
Geczy, A. F., Geczy, C. L. & DeWeck, A. L. (1975). Histocompatibility antigens and genetic control of the immune response in guinea pigs. II. Specific inhibition of antigen-induced lymphocyte proliferation by anti-receptor alloantisera. European Journal of Immunology 5, 711–19.CrossRefGoogle ScholarPubMed
Liu, Si-Kwang. (1966). Genetic influence on resistance of mice to Nematospiroides dubius. Experimental Parasitology 18, 311–19.CrossRefGoogle Scholar
Mitchell, G. F., Goding, J. W. & Rickard, M. D. (1977). Studies on immune responses to larval cestodes in mice. Increased susceptibility of certain mouse strains and hypothymic mice to Taenia taeniaeformis and analysis of passive transfer of resistance with serum. Australian Journal of Experimental Biology and Medical Science 55, 165–86.CrossRefGoogle ScholarPubMed
Ogilvie, B. M. (1974). Immunity to parasites (helminths and arthropods). In Progress in Immunology II, vol. 4. Proceedings of the 2nd International Congress of Immunology, (ed. Brent, L. and Holborow, J.), pp. 127–35. Amsterdam. North-Holland Publishing Company.Google Scholar
Rothwell, T. L. W., Dineen, J. K. & Love, R. J. (1971). The role of pharmacologically active amines in resistance to Trichostrongylus colubriformis in the guinea-pig. Immunology 21, 925–38.Google ScholarPubMed
Rothwell, T. L. W., Le Jambre, L. F., Adams, D. B. & Love, R. J. (1978). Trichostrongylus colubriformis infection of guinea-pigs: genetic basis for variation in susceptibility to infection among outbred animals. Parasitology 76, 201–9.CrossRefGoogle ScholarPubMed
Rothwell, T. L. W. & Love, R. J. (1974). Vaccination against the nematode Trichostrongylus colubriformis. I. Vaccination of guinea-pigs with worm homogenates and soluble products released during in vitro maintenance. International Journal for Parasitology 4, 293–9.CrossRefGoogle ScholarPubMed
Schwartz, B. D., Kask, A. M., Paul, W. E., Geczy, A. F. & Shevach, E. M. (1977). The guinea pig I region. I. A structural and genetic analysis. Journal of Experimental Medicine 146, 5477–60.CrossRefGoogle Scholar
Schwartz, B. D., Paul, W. E. & Shevach, E. M. (1976). Guinea pig Ia antigens. Functional significance and chemical characterization. Transplantation Reviews 30, 174–96.Google ScholarPubMed
Schevach, E. M., Lundquist, M. L., Geczy, A. F. & Schwartz, B. D. (1977). The guinea pig I region. II. Functional analysis. Journal of Experimental Medicine 146, 561–70.CrossRefGoogle Scholar
Tanner, C. E. (1978). The susceptibility to Trichinella spiralis of inbred lines of mice differing at the H-2 histocompatibility locus. Journal of Parasitology 64, 956–70.CrossRefGoogle ScholarPubMed
Wagland, B. M. & Dineen, J. K. (1965). The cellular transfer of immunity to Trichostrongylus colubriformis in an isogenic strain of guinea-pig. Australian Journal of Experimental Biology and Medical Science 43, 429–38.CrossRefGoogle Scholar
Wakelin, D. (1975). Genetic control of immune responses to parasites: immunity to Trichuris muris in inbred and random-bred strains of mice. Parasitology 71, 5160.CrossRefGoogle ScholarPubMed
Wassom, D. L., David, C. S. & Gleich, G. J. (1979). Genes within the major histocompatibility complex influence susceptibility to Trichinella spiralis in the mouse. Immunogenetics 9, 491–6.CrossRefGoogle Scholar
Whitlock, H. V. (1956). An improved method for the culture of nematode larvae in sheep faeces. Australian Veterinary Journal 32, 141–3.CrossRefGoogle Scholar