Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T04:40:10.032Z Has data issue: false hasContentIssue false

Functional genomics of nematode acetylcholinesterases

Published online by Cambridge University Press:  29 March 2006

M. E. SELKIRK
Affiliation:
Division of Cell and Molecular Biology, Imperial College London, London SW7 2AY, United Kingdom
O. LAZARI
Affiliation:
Department of Veterinary Clinical Science, University of Liverpool, South Wirral, CH64 7TE, United Kingdom
J. B. MATTHEWS
Affiliation:
Division of Parasitology, Moredun Research Institute, Midlothian EH26 OPZ, United Kingdom

Abstract

Acetylcholine is the major excitatory neurotransmitter controlling motor activities in nematodes, and the enzyme which hydrolyses and inactivates acetylcholine, acetylcholinesterase, is thus essential for regulation of cholinergic transmission. Different forms of acetylcholinesterase are encoded by multiple genes in nematodes, and analysis of the pattern of expression of these genes in Caenorhabditis elegans suggests that they perform non-redundant functions. In addition, many parasitic species which colonise host mucosal surfaces secrete hydrophilic variants of acetylcholinesterase, although the function of these enzymes is still unclear. Acetylcholinesterases have a history as targets for therapeutic agents against helminth parasites, but anti-cholinesterases have been used much more extensively as pesticides, for example to control crop damage and ectoparasitic infestation of livestock. The toxicity associated with these compounds (generally organophosphates and carbamates) has led to legislation to withdraw them from the market or restrict their use in many countries. Nevertheless, acetylcholinesterases provide a good example of a neuromuscular target enzyme in helminth parasites, and it may yet be possible to develop more selective inhibitors. In this article, we describe what is known about the structure and function of vertebrate cholinesterases, illustrate the molecular diversity and tissue distribution of these enzymes in C. elegans, and discuss to what extent this may represent a paradigm for nematodes in general.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AIELLO, S. E. ( 1998). The Merck Veterinary Manual, 8th Edition, John Wiley and Sons, New York.
ANDREWS, M. C., CALLAGHAN, A., FIELD, L. M., WILLIAMSON, M. S. & MOORES, G. D. ( 2004). Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Molecular Biology 13, 555561.CrossRefGoogle Scholar
ARPAGAUS, M., FEDON, Y., COUSIN, X., CHATONNET, A., BERGÉ, J.-B., FOURNIER, D. & TOUTANT, J.-P. ( 1994). cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. Journal of Biological Chemistry 269, 99579965.Google Scholar
AUSTIN, L. & BERRY, W. K. ( 1953). Two selective inhibitors of cholinesterase. Biochemical Journal 54, 695700.CrossRefGoogle Scholar
BAXTER, G. D. & BARKER, S. C. ( 2002). Analysis of the sequence and expression of a second putative acetylcholinesterase cDNA from organophosphate-susceptible and organophosphate-resistant cattle ticks. Insect Biochemistry and Molecular Biology 32, 815820.CrossRefGoogle Scholar
BAZELYANSKY, M., ROBEY, E. & KIRSCH, J. F. ( 1986). Fractional diffusion-limited component of reactions catalyzed by acetylcholinesterase. Biochemistry 25, 125130.CrossRefGoogle Scholar
BELBEOC'h, S., FALASCA, C., LEROY, J., AYON, A., MASSOULIÉ, J. & BON, S. ( 2004). Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation. Euopean Journal of Biochemistry 271, 14761487.CrossRefGoogle Scholar
BISHOP, Y. ( 2004). The Veterinary Formulary, 6th Edition. Pharmaceutical Press, London.
BLUMENTHAL, T. ( 1995). Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends in Genetics 11, 132136.CrossRefGoogle Scholar
BON, S., DUFOURCQ, J., LEROY, J., CORNUT, I. & MASSOULIÉ, J. ( 2004). The C-terminal t peptide of acetylcholinesterase forms an alpha helix that supports homomeric and heteromeric interactions. European Journal of Biochemistry 271, 3347.CrossRefGoogle Scholar
BOURNE, Y., TAYLOR, P. & MARCHOT, P. ( 1995). Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83, 503512.CrossRefGoogle Scholar
CHANG, S. & OPPERMAN, C. H. ( 1991). Characterization of acetylcholinesterase molecular forms of the root-knot nematode, Meloidogyne. Molecular and Biochemical Parasitology 49, 205214.CrossRefGoogle Scholar
CHANG, S. & OPPERMAN, C. H. ( 1992). Separation and characterization of Heterodera glycines acetylcholinesterase molecular forms. Journal of Nematology 24, 148155.Google Scholar
COMBES, D., FEDON, Y., GRAUSO, M., TOUTANT, J. P. & ARPAGAUS, M. ( 2000). Four genes encode acetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA sequences, genomic structures, mutations and in vivo expression. Journal of Molecular Biology 300, 727742.Google Scholar
COMBES, D., FEDON, Y., TOUTANT, J. P. & ARPAGAUS, M. ( 2003). Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression. European Journal of Neuroscience 18, 497512.CrossRefGoogle Scholar
COOKE, H. J. ( 2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Annals of the New York Academy of Sciences 915, 7780.CrossRefGoogle Scholar
COUSIN, X., BON, S., DUVAL, N., MASSOULIÉ, J. & BON, C. ( 1996 a). Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. Journal of Biological Chemistry 271, 1509915108.Google Scholar
COUSIN, X., BON, S., MASSOULIÉ, J. & BON, C. ( 1998). Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle. Journal of Biological Chemistry 273, 98129820.Google Scholar
COUSIN, X., CRÉminon, C., GRASSI, J., MÉflah, K., CORNU, G., SALIOU, B., BON, S., MASSOULIÉ, J. & BON, C. ( 1996 b). Acetylcholinesterase from Bungarus venom: a monomeric species. FEBS Letters 387, 196200.Google Scholar
CULETTO, E. ( 1998). Acetylcholinesterase genes in C. elegans. Mechanism of regulation of ace-1. Cloning of a fourth gene. PhD Thesis, University of Nice.
CULETTO, E., COMBES, D., FEDON, Y., ROIG, A., TOUTANT, J. P. & ARPAGAUS, M. ( 1999). Structure and promoter activity of the 5′ flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans. Journal of Molecular Biology 290, 951966.CrossRefGoogle Scholar
CULLINEY, T. W., PIMENTEL, D. & PIMENTEL, M. H. ( 1992). Pesticides and natural toxicants in foods. Agriculture, Ecosystems and Environment 41, 297320.CrossRefGoogle Scholar
CULOTTI, J. G., VON EHRENSTEIN, G., CULOTTI, M. R. & RUSSELL, R. L. ( 1981). A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 97, 281305.Google Scholar
CYGLER, M., SCHRAG, J. D., SUSSMAN, J. L., HAREL, M., SILMAN, I., GENTRY, M. K. & DOCTOR, B. P. ( 1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science 2, 366382.CrossRefGoogle Scholar
DESCARRIES, L. ( 1998). The hypothesis of an ambient level of acetylcholine in the central nervous system. Journal of Physiology Paris 92, 215220.CrossRefGoogle Scholar
DE vos, T. & DICK, T. A. ( 1992). Characterization of cholinesterases from the parasitic nematode Trichinella spiralis. Comparative Biochemistry and Physiology C 103, 129134.Google Scholar
DOODY, R. S. ( 2003). Current treatments for Alzheimer's disease: cholinesterase inhibitors. Journal of Clinical Psychiatry 64 (Suppl. 9), 1117.Google Scholar
DVIR, H., HAREL, M., BON, S., LIU, W. Q., VIDAL, M., GARBAY, C., SUSSMAN, J. L., MASSOULIé, J. & SILMAN, I. ( 2004). The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. EMBO Journal 23, 43944405.CrossRefGoogle Scholar
EDWARDS, A. J., BURT, J. S. & OGILVIE, B. M. ( 1971). The effect of host immunity upon some enzymes of the parasitic nematode, Nippostrongylus brasiliensis. Parasitology 62, 339347.CrossRefGoogle Scholar
EICHLER, J., ANSELMENT, A., SUSSMAN, J. L., MASSOULIé, J. & SILMAN, I. ( 1994). Differential effects of “peripheral” site ligands on Torpedo and chicken acetylcholinesterase. Molecular Pharmacology 45, 335340.Google Scholar
FORGACS, P., PROVOST, J. & TIBERGHION, R. ( 1970). Etude expérimentale de l'activité anthelminthique de quelques cucurbitacines. Actualites de Chimie Thérapeutique 5, 205210.Google Scholar
FOURNIER, D., MUTERO, A., PRALAVORIO, M. & BRIDE, J. M. ( 1993). Drosophila acetylcholinesterase: mechanisms of resistance to organophosphates. Chemico-Biological Interactions 87, 233238.CrossRefGoogle Scholar
FROBERT, Y., CREMINON, C., COUSIN, X., REMY, M. H., CHATEL, J. M., BON, S., BON, C. & GRASSI, J. ( 1997). Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochimica et Biophysica Acta 1339, 253267.CrossRefGoogle Scholar
GEARY, T. G., CONDER, G. A. & BISHOP, B. ( 2004). The changing landscape of antiparasitic drug discovery for veterinary medicine. Trends in Parasitology 20, 449455.CrossRefGoogle Scholar
GIACOBINI, E. ( 2003). Cholinergic function and Alzheimer's disease. International Journal of Geriatric Psychiatry 18, S1S5.CrossRefGoogle Scholar
GILSON, M. K., STRAATSMA, T. P., McCAMMON, J. A., RIPOLL, D. R., FAERMAN, C. H., AXELSEN, P. H., SILMAN, I. & SUSSMAN, J. L. ( 1994). Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science 263, 12761278.CrossRefGoogle Scholar
GLYNN, P., READ, D. J., LUSH, M. J., LI, Y. & ATKINS, J. ( 1999). Molecular cloning of neuropathy target esterase (NTE). Chemico-Biological Interactions 119–120, 513517.CrossRefGoogle Scholar
GRAUSO, M., CULETTO, E., COMBES, D., FEDON, Y., TOUTANT, J.-P. & ARPAGAUS, M. ( 1998). Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Letters 424, 279284.CrossRefGoogle Scholar
GREEN, P. E., FORSYTH, B. A., ROWAN, K. J. & PAYNE, G. ( 1981). The isolation of a field isolate of Haemonchus contortus in Queensland showing multiple anthelmintic resistance. Australian Veterinary Journal 57, 7984.CrossRefGoogle Scholar
GREENBLATT, H. M., DVIR, H., SILMAN, I. & SUSSMAN, J. L. ( 2003). Acetylcholinesterase: a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer's disease. Journal of Molecular Neuroscience 20, 369383.CrossRefGoogle Scholar
GRIFFITHS, G. & PRITCHARD, D. I. ( 1994). Purification and biochemical characterisation of acetylcholinesterase (AChE) from the excretory/secretory products of Trichostrongylus colubriformis. Parasitology 108, 579586.CrossRefGoogle Scholar
GRIGG, M. E., TANG, L., HUSSEIN, A. S. & SELKIRK, M. E. ( 1997). Purification and properties of monomeric (G1) forms of acetylcholinesterase secreted by Nippostrongylus brasiliensis. Molecular and Biochemical Parasitology 90, 513524.CrossRefGoogle Scholar
HALL, L. M. C. & SPIERER, P. ( 1986). The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader. EMBO Journal 5, 29492954.Google Scholar
HAREL, M., KRYGER, G., ROSENBERRY, T. L., MALLENDER, W. D., LEWIS, T., FLETCHER, R. J., GUSS, J. M., SILMAN, I. & SUSSMAN, J. L. ( 2000). Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science 9, 10631072.CrossRefGoogle Scholar
HAREL, M., SUSSMAN, J. L., KREJCI, E., BON, S., CHANAL, P., MASSOULIÉ, J. & SILMAN, I. ( 1992). Conversion of acetylcholinesterase to butyrylcholinesterase: modelling and mutagenesis. Proceedings of the National Academy of Sciences, USA 89, 1082710831.CrossRefGoogle Scholar
HUSSEIN, A. S., CHACón, M. R., SMITH, A. M., TOSADO-ACEVEDO, R. & SELKIRK, M. E. ( 1999). Cloning, expression, and properties of a nonneuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. Journal of Biological Chemistry 274, 93129319.CrossRefGoogle Scholar
HUSSEIN, A. S., GRIGG, M. E. & SELKIRK, M. E. ( 1999). Nippostrongylus brasiliensis: characterisation of a somatic amphiphilic acetylcholinesterase with properties distinct from the secreted enzymes. Experimental Parasitology 91, 144150.CrossRefGoogle Scholar
HUSSEIN, A. S., HAREL, M. & SELKIRK, M. E. ( 2002). A distinct family of acetylcholinesterases is secreted by Nippostrongylus brasiliensis. Molecular and Biochemical Parasitology 123, 125134.Google Scholar
HUSSEIN, A. S., KICHENIN, K. & SELKIRK, M. E. ( 2002). Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Molecular and Biochemical Parasitology 122, 9194.CrossRefGoogle Scholar
HUSSEIN, A. S., SMITH, A. M., CHACON, M. R. & SELKIRK, M. E. ( 2000). Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. European Journal of Biochemistry 267, 22762282.CrossRefGoogle Scholar
JAMAL, G. A. ( 1997). Neurological syndromes of organophosphorus compounds. Adverse Drug Reactions and Toxicological Reviews 16, 133170.Google Scholar
JOHNSON, C. D., DUCKETT, J. G., CULOTTI, J. G., HERMAN, P. M., MENEELY, P. M. & RUSSELL, R. L. ( 1981). An acetylcholinesterase-deficient mutant of the nematode Caenorhabditis elegans. Genetics 97, 261279.Google Scholar
JOHNSON, C. D., RAND, J. R., HERMAN, R. K., STERN, B. D. & RUSSELL, R. L. ( 1988). The acetylcholinesterase genes of C. elegans: identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype. Neuron 1, 165173.CrossRefGoogle Scholar
JONES, V. E. & OGILVIE, B. M. ( 1972). Protective immunity to Nippostrongylus brasiliensis in the rat III. Modulation of worm acetylcholinesterase by antibodies. Immunology 22, 119129.Google Scholar
KAUFER, D., FRIEDMAN, A., SEIDMAN, S. & SOREQ, H. ( 1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373377.CrossRefGoogle Scholar
KENNEDY, B. P., AAMODT, E. J., ALLEN, F. L., CHUNG, M. A., HESCHL, M. F. & McGHEE, J. D. ( 1993). The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Journal of Molecular Biology 229, 890908.CrossRefGoogle Scholar
KOLSON, D. L. & RUSSELL, R. L. ( 1985). A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans. Journal of Neurogenetics 2, 93110.CrossRefGoogle Scholar
KRAUT, D., GOFF, H., PAI, R. K., HOSEA, N. A., SILMAN, I., SUSSMAN, J. L., TAYLOR, P. & VOET, J. G. ( 2000). Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride. Molecular Pharmacology 57, 12431248.Google Scholar
LAZARI, O., HUSSEIN, A. S., SELKIRK, M. E., DAVIDSON, A. J., THOMPSON, F. J. & MATTHEWS, J. B. ( 2003). Cloning and expression of two secretory acetylcholinesterases from the bovine lungworm, Dictyocaulus viviparus. Molecular and Biochemical Parasitology 132, 8392.CrossRefGoogle Scholar
LAZARI, O., SELKIRK, M. E., PLOEGER, H. W. & MATTHEWS, J. B. ( 2004). A putative neuromuscular acetylcholinesterase gene from Dictyocaulus viviparus. Molecular and Biochemical Parasitology 136, 313317.CrossRefGoogle Scholar
LEE, D. L. ( 1970). The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the “excretory glands”. Tissue and Cell 2, 225231.CrossRefGoogle Scholar
LEE, D. L. ( 1996). Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? International Journal for Parasitology 26, 499508.Google Scholar
LEWIS, J. A., WU, C. H., LEVINE, J. H. & BERG, H. ( 1980). Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967989.CrossRefGoogle Scholar
LI, F. & HAN, Z. ( 2004). Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology 34, 397405.CrossRefGoogle Scholar
LOCKRIDGE, O., BARTELS, C. F., VAUGHAN, T. A., WONG, C. K., NORTON, S. E. & JOHNSON, L. L. ( 1987). Complete amino acid sequence of human serum cholinesterase. Journal of Biological Chemistry 262, 549557.Google Scholar
LOCKRIDGE, O. & MASSON, P. ( 2000). Pesticides and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology 21, 113126.Google Scholar
MARTIN, R. J. ( 1997). Modes of action of anthelmintic drugs. Veterinary Journal 154, 1134.CrossRefGoogle Scholar
MASSON, P., SCHOPFER, L. M., BARTELS, C. F., FROMENT, M. T., RIBES, F., NACHON, F. & LOCKRIDGE, O. ( 2002). Substrate activation in acetylcholinesterase induced by low pH or mutation in the pi-cation subsite. Biochimica et Biophysica Acta 1594, 313324.CrossRefGoogle Scholar
MASSOULIé, J. ( 2002). The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11, 130143.CrossRefGoogle Scholar
McKEAND, J. B., KNOX, D. P., DUNCAN, J. L. & KENNEDY, M. W. ( 1994). The immunogenicity of the acetylcholinesterases of the cattle lungworm, Dictyocaulus viviparus. International Journal for Parasitology 24, 501510.CrossRefGoogle Scholar
McKELLAR, Q. A. & JACKSON, F. ( 2004). Veterinary anthelmintics: old and new. Trends in Parasitology 20, 456461.CrossRefGoogle Scholar
MOERMAN, D. G. & FIRE, A. ( 1997). Muscle: structure, function and development. In C. elegans II ( Eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 417470. Cold Spring Harbor Press, Cold Spring Harbor, New York.
NGUYEN, M., ALFONSO, A., JOHNSON, C. D. & RAND, J. B. ( 1995). Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527535.Google Scholar
OGILVIE, B. M., ROTHWELL, T. L. W., BREMNER, K. C., SCHITZERLING, H. J., NOLAN, J. & KEITH, R. K. ( 1973). Acetylcholinesterase secretion by parasitic nematodes, 1. Evidence for secretion of the enzyme by a number of species. International Journal for Parasitology 3, 589597.Google Scholar
ORDENTLICH, A., BARAK, D., KRONMAN, C., FLASHNER, Y., LEITNER, M., SEGALL, Y., ARIEL, N., COHEN, S., VELAN, B. & SHAFFERMAN, A. ( 1993). Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Journal of Biological Chemistry 268, 1708317095.Google Scholar
OUELLETTE, A. J. & SELSTED, M. E. ( 1996). Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB Journal 10, 12801289.CrossRefGoogle Scholar
PERRETT, S. & WHITFIELD, P. J. ( 1995). Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Medica 61, 276278.CrossRefGoogle Scholar
PIOTTE, C., ARTHAUD, L., ABAD, P. & ROSSO, M. N. ( 1999). Molecular cloning of an acetylcholinesterase gene from the plant parasitic nematodes, Meloidogyne incognita and Meloidogyne javanica. Molecular and Biochemical Parasitology 99, 247256.CrossRefGoogle Scholar
PRITCHARD, D. I., BROWN, A. & TOUTANT, J.-P. ( 1994). The molecular forms of acetylcholinesterase from Necator americanus (Nematoda), a hookworm parasite of the human intestine. European Journal of Biochemistry 219, 317323.CrossRefGoogle Scholar
RADIC, Z., GIBNEY, G., KAWAMOTO, S., MACPHEE-QUIGLEY, K., BONGIORNO, C. & TAYLOR, P. ( 1992). Expression of recombinant acetylcholinesterase in a baculovirus system: kinetic properties of glutamate 199 mutants. Biochemistry 31, 97609767.CrossRefGoogle Scholar
RADIC, Z., PICKERING, N. A., VELLOM, D. C., CAMP, S. & TAYLOR, P. ( 1993). Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry 32, 1207412084.CrossRefGoogle Scholar
RAND, J. B. & NONET, M. L. ( 1997 a). Synaptic transmission. In C. elegans II ( Eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 611643. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
RAND, J. B. & NONET, M. L. ( 1997 b). Neurotransmitter assignments for specific neurons. In C. elegans II ( Eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 10491052. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
RHOADS, M. L. ( 1981). Cholinesterase in the parasitic nematode Stephanurus dentatus. Characterisation and sex dependence of a secretory cholinesterase. Journal of Biological Chemistry 256, 93169323.Google Scholar
RHOADS, M. L. ( 1984). Secretory cholinesterases of nematodes: possible functions in the host-parasite relationship. Tropical Veterinarian 2, 310.Google Scholar
RIPOLL, D. R., FAERMAN, C. H., AXELSEN, P. H., SILMAN, I. & SUSSMAN, J. L. ( 1993). An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences, USA 90, 51285132.CrossRefGoogle Scholar
SANDERS, M., MATHEWS, B., SUTHERLAND, D., SOONG, W., GILES, H. & PEZZEMENTI, L. ( 1996). Biochemical and molecular characterization of acetylcholinesterase from the hagfish Myxine glutinosa. Comparative and Biochemical Physiology 115B, 97109.CrossRefGoogle Scholar
SANDERSON, B. E. ( 1972). Release of cholinesterase by adult Nippostrongylus brasiliensis in vitro. Zeitschrift für Parasitenkunde 40, 17.CrossRefGoogle Scholar
SANDERSON, B. E., JENKINS, D. C. & OGILVIE, B. M. ( 1972). Nippostrongylus brasiliensis: relation between immune damage and acetylcholinesterase levels. International Journal for Parasitology 2, 227232.CrossRefGoogle Scholar
SANDERSON, B. E., JENKINS, D. C. & PHILLIPSON, R. F. ( 1976). Nippostrongylus brasiliensis: further studies of the relation between host immunity and worm acetylcholinesterase levels. International Journal for Parasitology 6, 99102.CrossRefGoogle Scholar
SANGSTER, N. C. ( 1999). Anthelmintic resistance: past, present and future. International Journal for Parasitology 29, 115124.CrossRefGoogle Scholar
SANGSTER, N. C., DAVIS, C. W. & COLLINS, G. H. ( 1991). Effects of cholinergic drugs on longitudinal contraction in levamisole-susceptible and -resistant Haemonchus contortus. International Journal for Parasitology 21, 689695.CrossRefGoogle Scholar
SATOH, Y., ISHIKAWA, K., OOMORI, Y., TAKEDA, S. & ONO, K. ( 1992). Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells of mouse intestine. Cell and Tissue Research 269, 213220.CrossRefGoogle Scholar
SCHREIBER, K. ( 1968). Steroid alkaloids. Solanum groups. In The Alkaloids ( Ed. Manske, R. H.), pp. 1192. Academic Press, New York.
SEGERBERG, M. A. & STRETTON, A. O. ( 1993). Actions of cholinergic drugs in the nematode Ascaris suum. Complex pharmacology of muscle and motorneurons. Journal of General Physiology 101, 271296.Google Scholar
SELKIRK, M. E., HENSON, S., RUSSELL, W. S. & HUSSEIN, A. S. ( 2001). Acetylcholinesterase secretion by nematodes. In Parasitic Nematodes ( Eds. Kennedy, M. W. & Harnett, W.), pp. 211228. Wallingford, Oxon, CAB International, Wallingford, Oxon.CrossRef
SHARMA, L. D., BAHGA, H. S. & SRIVASTAVA, P. S. ( 1971). In vitro anthelmintic screening of indigenous medicinal plants against Haemonchus contortus of sheep and goats. Indian Journal of Animal Research 1, 3338.Google Scholar
SIMON, S., KREJCI, E. & MASSOULIé, J. ( 1998). A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO Journal 17, 61786187.CrossRefGoogle Scholar
SRAMEK, J. J., FRACKIEWICZ, E. J. & CUTLER, N. R. ( 2000). Review of the acetylcholinesterase inhibitor galanthamine. Expert Opinion on Investigational Drugs 9, 23932402.CrossRefGoogle Scholar
STERN, B. D. ( 1986). Acetylcholinesterase from Caenorhabditis elegans: partial purification and immunocytochemistry of class C, and discovery of class D. PhD Thesis, University of Pittsburgh.
SUN, H., PANG, Y. P., LOCKRIDGE, O. & BRIMIJOIN, S. ( 2002). Re-engineering butyrylcholinesterase as a cocaine hydrolase. Molecular Pharmacology 62, 220224.CrossRefGoogle Scholar
SUSSMAN, J. L., HAREL, M., FROLOW, F., OEFNER, C., GOLDMAN, A., TOKER, L. & SILMAN, I. ( 1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872879.CrossRefGoogle Scholar
TALESA, V., ROMANI, R., GRAUSO, M., ROSI, G. & GIOVANNINI, E. ( 1997). Expression of a single dimeric membrane-bound acetylcholinesterase in Parascaris equorum. Parasitology 115, 653660.CrossRefGoogle Scholar
TAYLOR, P. & RADIC, Z. ( 1994). The cholinesterases: from genes to proteins. Annual Reviews in Pharmacology and Toxicology 34, 281320.CrossRefGoogle Scholar
TOUTANT, J.-P. ( 1989). Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Progress in Neurobiology 32, 423446.CrossRefGoogle Scholar
TOUTANT, J.-P., MASSOULIÉ, J., FOURNIER, D., MARTY, J.-L., SCHMID, R., PFEIFFER, D., SELKIRK, M. E., SUSSMAN, J., SILMAN, I., TALESA, V., WODAK, S., STOJAN, J. & MAGEARU, V. ( 2004). New biosensors for improved detection of environmental and food contamination by anticholinesterase pesticides. In Cholinesterases in the Second Millenium: Biomolecular and Pathological Aspects ( Eds. Inestrosa, N. C. & Campos, E. O.), pp. 233235. MIFAB. Santiago, Chile.
TRACEY, K. J. ( 2002). The inflammatory reflex. Nature 420, 853859.CrossRefGoogle Scholar
VAN GELDER, W. M. J., VINKE, J. H. & SCHEFFER, J. J. C. ( 1988). Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 37S, 147158.CrossRefGoogle Scholar
VELLOM, D. C., RADIC, Z., LI, Y., PICKERING, N. A., CAMP, S. & TAYLOR, P. ( 1993). Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32, 1217.CrossRefGoogle Scholar
WEILL, M., LUTFALLA, G., MOGENSEN, K., CHANDRE, F., BERTHOMIEU, A., BERTICAT, C., PASTEUR, N., PHILIPS, A., FORT, P. & RAYMOND, M. ( 2003). Comparative genomics: Insecticide resistance in mosquito vectors. Nature 423, 136137.CrossRefGoogle Scholar
WILSON, I. B., BERGMANN, F. & NACHMANSOHN, D. ( 1950). Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. Journal of Biological Chemistry 186, 781790.Google Scholar