Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T19:18:11.131Z Has data issue: false hasContentIssue false

Fast Real-Time PCR assay for detection of Tetramicra brevifilum in cultured turbot

Published online by Cambridge University Press:  15 October 2012

MERCEDES ALONSO
Affiliation:
Research Department of Genomics and Proteomics Applied to the Marine and Food Industry, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
FÁTIMA C. LAGO
Affiliation:
Research Department of Genomics and Proteomics Applied to the Marine and Food Industry, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
MARÍA GÓMEZ-REINO
Affiliation:
Research Department of Aquaculture, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
JACOBO FERNÁNDEZ
Affiliation:
INSUIÑA S.L., Xove, Lugo, Spain
IRIS MARTÍN
Affiliation:
INSUIÑA S.L., Xove, Lugo, Spain
JUAN M. VIEITES
Affiliation:
Research Department of Genomics and Proteomics Applied to the Marine and Food Industry, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
MONTSERRAT ESPIÑEIRA*
Affiliation:
Research Department of Genomics and Proteomics Applied to the Marine and Food Industry, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain
*
*Corresponding author: Research Department of Genomics and Proteomics Applied to the Marine and Food Industry, ANFACO-CECOPESCA, Vigo, 36310 Pontevedra, Spain. Tel: +31 34 986 469 301. Fax: +31 34 986 469 269. E-mail: [email protected]

Summary

Global aquaculture production of turbot has rapidly increased worldwide in the last decade and it is expected to have even bigger growth in the next years due to new farms operating. The losses caused by pathogen infections have grown at the same time as the production of this species. Parasitological infections are among the main relevant pathologies associated with its culture and produce serious losses in aquaculture, reduce the growth rate in fish and may lead to unmarketable fish due to skeletal muscle abnormalities in cases with high intensity of infection. The microsporidian parasite Tetramicra brevifilum causes severe infections and generates major losses in farmed turbot. Infections are difficult to control due to spore longevity and its direct transmission. To facilitate the infection management, an effective tool for fast detection and identification of T. brevifilum is needed. This study provides a molecular methodology of fast Real-Time PCR for T. brevifilum detection to the aquaculture industry, useful for routine control of T. brevifilum at turbot farms. The method is characterized by its high specificity and sensitivity, and it can be applied to cultured turbot for parasite detection regardless of the life-cycle stage of the pathogen or the infection intensity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso, M., Herrero, B., Vieites, J. M. and Espineira, M. (2011). Real-time PCR assay for detection of Trichinella in meat. Food Control 22, 13331338.CrossRefGoogle Scholar
Alonso, M., Lago, F. C., Herrero, B., Vieites, J. M. and Espiñeira, M. (2012). Molecular characterization of microalgae used in aquaculture with biotechnology potential, Aquaculture International 20, 847857 (DOI: 10·1007/s10499-012-9506-8).CrossRefGoogle Scholar
Alvarez-Pellitero, P., Quiroga, M. I., Sitja-Bobadilla, A., Redondo, M. J., Palenzuela, O., Padros, F., Vazquez, S. and Nieto, J. M. (2004). Cryptosporidium scophthalmi n. sp (Apicomplexa : Cryptosporidiidae) from cultured turbot Scophthalmus maximus. Light and electron microscope description and histopathological study. Diseases of Aquatic Organisms 62, 133145.CrossRefGoogle Scholar
Andree, K. B., MacConnell, E. and Hedrick, R. P. (1998). A nested polymerase chain reaction for the detection of genomic DNA of Myxobolus cerebralis in rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms 34, 145154.CrossRefGoogle ScholarPubMed
Apfalter, P., Reischl, U. and Hammerschlag, M. R. (2005). In-house nucleic acid amplification assays in research: How much quality control is needed before one can rely upon the results? Journal of Clinical Microbiology 43, 58355841.CrossRefGoogle ScholarPubMed
Bartholomew, J. L., Rodriguez, R. J. and Aradawa, C. K. (1995). Development of a DNA-probe for the myxosporean parasite Ceratomyxa-Shasta, using the Polymerase Chain-Reaction with arbitrary primers. Diseases of Aquatic Organisms 21, 215220.CrossRefGoogle Scholar
Bartholomew, J. L., Smith, C. E., Rohovec, J. S. and Fryer, J. L. (1989). Characterization of a host response to the myxosporean parasite, Ceratomyxa-Shasta (Noble), by histology, scanning electron-microscopy and inmunological techniques. Journal of Fish Diseases 12, 509522.CrossRefGoogle Scholar
Branson, E., Riaza, A. and Alvarez-Pellitero, P. (1999). Myxosporean infection causing intestinal disease in farmed turbot, Scophthalmus maximus (L.), (Teleostei : Scophthalmidae). Journal of Fish Diseases 22, 395399.CrossRefGoogle Scholar
Budino, B., Lamas, J., Pata, M. P., Arranz, J. A., Sanmartin, M. L. and Leiro, J. (2011). Intraspecific variability in several isolates of Philasterides dicentrarchi (syn. Miamiensis avidus), a scuticociliate parasite of farmed turbot. Veterinary Parasitology 175, 260272.CrossRefGoogle ScholarPubMed
Bustin, SA. (2004). A-Z of Quantitative PCR. La Jolla, CA, USA.Google Scholar
Estevez, J., Iglesias, R., Leiro, J., Ubeira, F. M. and Sanmartin, M. L. (1992). An unusual site of infection by a microsporean in the turbot Scophthalmus maximus. Diseases of Aquatic Organisms 13, 139142.CrossRefGoogle Scholar
FAO (2010). FAO Fisheries and Aquaculture Technical Paper 500/1. World Aquaculture 2010.Google Scholar
Feist, S. W. and Longshaw, M. (2008). Histopathology of fish parasite infections – importance for populations. Journal of Fish Biology 73, 21432160.CrossRefGoogle Scholar
Figueras, A., Novoa, B., Santarem, M., Martinez, E., Alvarez, J. M., Toranzo, A. E. and Dykova, I. (1992). Tetramicra brevifilum, a potential threat to farmed turbot Scophthalmus maximus. Diseases of Aquatic Organisms 14, 127135.CrossRefGoogle Scholar
Gruebl, T., Frischer, M. E., Sheppard, M., Neumann, M., Maurer, A. N. and Lee, R. F. (2002). Development of an 18S rRNA gene-targeted PCR-based diagnostic for the blue crab parasite Hematodinium sp. Diseases of Aquatic Organisms 49, 6170.CrossRefGoogle ScholarPubMed
Harikrishnan, R., Jin, C. N., Kim, M. C., Kim, J. S., Balasundaram, C. and Heo, M. S. (2010). Effectiveness and immunomodulation of chemotherapeutants against scuticociliate Philasterides dicentrarchi in olive flounder. Experimental Parasitology 124, 306314.CrossRefGoogle ScholarPubMed
Herrero, B., Vieites, J. M. and Espiñeira, M. (2011). Duplex real-time PCR for authentication of anglerfish species. European Food Research and Technology 233, 817823.CrossRefGoogle Scholar
Hoorfar, J., Malorny, B., Abdulmawjood, A., Cook, N., Wagner, M. and Fach, P. (2004). Practical considerations in design of internal amplification controls for diagnostic PCR assays. Journal of Clinical Microbiology 42, 18631868.CrossRefGoogle ScholarPubMed
Kaukas, A. and Rollinson, D. (1997). Interspecific variation within the 'hypervariable' region of the 18S ribosomal RNA gene among species of Schistosoma Weinland, 1858 (Digenea). Systematic Parasitology 36, 157160.CrossRefGoogle Scholar
Lamas, J., Sanmartin, M. L., Parama, A. I., Castro, R., Cabaleiro, S., de Ocenda, M. V. L., Barja, J. L. and Leiro, J. (2008). Optimization of an inactivated vaccine against a scuticociliate parasite of turbot: Effect of antigen, formalin and adjuvant concentration on antibody response and protection against the pathogen. Aquaculture 278, 2226.CrossRefGoogle Scholar
Lee, S. G., Lee, S. H., Park, S. W., Suh, C. I., Jheong, W. H., Oh, S. and Paik, S. Y. (2011). Standardized positive controls for detection of norovirus by reverse transcription PCR. Virology Journal 8, 18.CrossRefGoogle ScholarPubMed
Leiro, J., Iglesias, R., Parama, A., Aragort, W. and Sanmartin, M. L. (2002). PCR detection of Tetramicra brevifilum (Microspora) infection in turbot (Scophthalmus maximus L.) musculature. Journal of Parasitology 124, 145151.CrossRefGoogle ScholarPubMed
Lom, J. and Dykova, I. (1992). Fine-structure of Triactinomyxon early stages and sporogony – myxosporean and actinosporean features compared. Journal of Protozoology 39, 1627.CrossRefGoogle Scholar
Maíllo, P. A., Amigó, J. M., Baena, R., Salvadó, H. and Gracia, M. P. (1998). Tetramicra brevifilum (Matthews and Matthews, 1980) (Microsporida: Tetramicriidae) in a new fish host, Lophius budegassa (Spinola, 1807) in Spain. Journal of Parasitology Research 84, 208212.Google Scholar
Matthews, R. A. and Matthews, B. F. (1980). Cell and tissue-reactions of turbot Scophthalmus maximus (L) to Tetramicra Brevifilum gen N, SP-N (Microspora). Journal of Fish Diseases 3, 6495–515.CrossRefGoogle Scholar
Padros, F., Zarza, C. A. and Crespo, S. (2001). Infecciones por ciliados histiófagos en acuicultura marina: Aspectos hitopatológicos, Instituto Canario de Ciencias Marinas.Google Scholar
Person-Le, J. R. (1990). Sole and turbot culture. In Aquaculture (ed. Barnabé, G.), pp. 687734. Ellis Horwood, New York, USA.Google Scholar
Sanmartin, M. L., Parama, A., Castro, R., Cabaleiro, S., Leiro, J., Lamas, J. and Barja, J. L. (2008). Vaccination of turbot, Psetta maxima (L.), against the protozoan parasite Philasterides dicentrarchi. effects on antibody production and protection. Journal of Fish Diseases e31, 135140.CrossRefGoogle Scholar
Sterud, E., Hansen, M. K. and Mo, T. A. (2000). Systemic infection with Uronema-like ciliates in farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 23, 3337.CrossRefGoogle Scholar
Winfrey, M. R. R., Rott, M. A. and Wortman, A. T. (1997). Unraveling DNA: Molecular Biology for the Laboratory. Prentice Hall, New York, USA.Google Scholar