Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T16:12:25.095Z Has data issue: false hasContentIssue false

Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host–parasite relationship

Published online by Cambridge University Press:  06 October 2015

MARTÍN CANCELA*
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
GUILHERME B. SANTOS
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
CARLOS CARMONA
Affiliation:
Unidad de Biología Parasitaria, Instituto de Biología, Facultad de Ciencias, Universidad de la República, UDELAR, Montevideo, Uruguay
HENRIQUE B. FERREIRA
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
JOSÉ FRANCISCO TORT
Affiliation:
Departamento de Genética, Facultad de Medicina, Universidad de la República, UDELAR, Montevideo, Uruguay
ARNALDO ZAHA
Affiliation:
Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências e Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
*
*Corresponding author. Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. Caixa Postal 15053, CEP 91501-970, Porto Alegre, RS, Brazil. E-mail: [email protected]

Summary

Fasciola hepatica is the causative agent of fasciolosis, a zoonosis with significant impact both in human and animal health. Understanding the basic processes of parasite biology, especially those related to interactions with its host, will contribute to control F. hepatica infections and hence liver pathology. Mucins have been described as important mediators for parasite establishment within its host, due to their key roles in immune evasion. In F. hepatica, mucin expression is upregulated in the mammalian invasive newly excysted juvenile (NEJ) stage in comparison with the adult stage. Here, we performed sequencing of mucin cDNAs prepared from NEJ RNA, resulting in six different cDNAs clusters. The differences are due to the presence of a tandem repeated sequence of 66 bp encoded by different exons. Two groups of apomucins one with three and the other with four repeats, with 459 and 393 bp respectively, were identified. These cDNAs have open reading frames encoding Ser-Thr enriched proteins with an N-terminal signal peptide, characteristic of apomucin backbone. We cloned a 4470 bp gene comprising eight exons and seven introns that encodes all the cDNA variants identified in NEJs. By real time polymerase chain reaction and high-resolution melting approaches of individual flukes we infer that fhemuc-1 is a single-copy gene, with at least two different alleles. Our data suggest that both gene polymorphism and alternative splicing might account for apomucin variability in the fhemuc-1 gene that is upregulated in NEJ invasive stage. The relevance of this variation in host–parasite interplay is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, J. S. (1999). The life cycle of Fasciola hepatica . In Fasciolosis (ed. Dalton, J. P.), pp. 129. CABI Publishing, Wallingford, UK, Chapter 1.Google Scholar
Berninsone, P. M. (2006). Carbohydrates and glycosylation. In WormBook (ed. The C. elegans Research Community), pp. 122. doi: 10.1895/wormbook.1.7.1, http://www.wormbook.org Google Scholar
Bhalchandra, S., Ludington, J., Coppens, I. and Ward, H. D. (2013). Identification and characterization of Cryptosporidium parvum Clec, a novel C-type lectin domain-containing mucin-like glycoprotein. Infection and Immunity 81, 33563365.CrossRefGoogle ScholarPubMed
Buscaglia, C. A., Campo, V. A., Frasch, A. C. and Di Noia, J. M. (2006). Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nature Reviews Microbiology 4, 229236.CrossRefGoogle ScholarPubMed
Cancela, M., Ruetalo, N., Dell'Oca, N., da Silva, E., Smircich, P., Rinaldi, G., Roche, L., Carmona, C., Alvarez-Valin, F., Zaha, A. and Tort, J. F. (2010). Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica . BMC Genomics 11, 227.CrossRefGoogle ScholarPubMed
Carmona, C., Dowd, A. J., Smith, A. M. and Dalton, J. P. (1993). Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Molecular and Biochemical Parasitology 62, 917.CrossRefGoogle ScholarPubMed
Casaravilla, C., Pittini, A., Ruckerl, D., Seoane, P. I., Jenkins, S. J., MacDonald, A. S., Ferreira, A. M., Allen, J. E. and Diaz, A. (2014). Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus . Infection and Immunity 82, 31643176.CrossRefGoogle ScholarPubMed
Diaz, A., Casaravilla, C., Irigoin, F., Lin, G., Previato, J. O. and Ferreira, F. (2011). Understanding the laminated layer of larval Echinococcus I: structure. Trends Parasitology 27, 204213.CrossRefGoogle ScholarPubMed
dos Santos, S. L., Freitas, L. M., Lobo, F. P., Rodrigues-Luiz, G. F., Mendes, T. A., Oliveira, A. C., Andrade, L. O., Chiari, E., Gazzinelli, R. T., Teixeira, S. M., Fujiwara, R. T. and Bartholomeu, D. C. (2012). The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Neglected Tropical Diseases 6, e1779.CrossRefGoogle ScholarPubMed
Fukuda, M. (2002). Roles of mucin-type O-glycans in cell adhesion. Biochimica et Biophysica Acta 1573, 394405.CrossRefGoogle ScholarPubMed
Furst, T., Keiser, J. and Utzinger, J. (2012). Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infectious Diseases 12, 210221.CrossRefGoogle ScholarPubMed
Garcia, H. H., Moro, P. L. and Schantz, P. M. (2007). Zoonotic helminth infections of humans: echinococcosis, cysticercosis and fascioliasis. Current Opinion in Infectious Diseases 20, 489494.CrossRefGoogle ScholarPubMed
Hanisch, F. G., Kinlough, C. L., Staubach, S. and Hughey, R. P. (2012). MUC1 membrane trafficking: protocols for assessing biosynthetic delivery, endocytosis, recycling, and release through exosomes. Methods in Molecular Biology 842, 123140.CrossRefGoogle ScholarPubMed
Hasnain, S. Z., Gallagher, A. L., Grencis, R. K. and Thornton, D. J. (2013). A new role for mucins in immunity: insights from gastrointestinal nematode infection. International Journal of Biochemistry & Cell Biology 45, 364374.CrossRefGoogle ScholarPubMed
Hewitson, J. P., Grainger, J. R. and Maizels, R. M. (2009). Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology 167, 111.CrossRefGoogle ScholarPubMed
Hicks, S. J., Theodoropoulos, G., Carrington, S. D. and Corfield, A. P. (2000). The role of mucins in host-parasite interactions. Part I-protozoan parasites. Parasitology Today 16, 476481.CrossRefGoogle ScholarPubMed
Hirzmann, J., Hintz, M., Kasper, M., Shresta, T. R., Taubert, A., Conraths, F. J., Geyer, R., Stirm, S., Zahner, H. and Hobom, G. (2002). Cloning and expression analysis of two mucin-like genes encoding microfilarial sheath surface proteins of the parasitic nematodes Brugia and Litomosoides. Journal of Biological Chemistry 277, 4760347612.CrossRefGoogle ScholarPubMed
Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305, 567580.CrossRefGoogle ScholarPubMed
Loukas, A., Hintz, M., Linder, D., Mullin, N. P., Parkinson, J., Tetteh, K. K. and Maizels, R. M. (2000). A family of secreted mucins from the parasitic nematode Toxocara canis bears diverse mucin domains but shares similar flanking six-cysteine repeat motifs. Journal of Biological Chemistry 275, 3960039607.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Bargues, M. D. and Valero, M. A. (2005). Fascioliasis and other plant-borne trematode zoonoses. International Journal of Parasitology 35, 12551278.CrossRefGoogle ScholarPubMed
Nguyen, T. G., Van De, N., Vercruysse, J., Dorny, P. and Le, T. H. (2009). Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam. Experimental Parasitology 123, 354361.CrossRefGoogle ScholarPubMed
O'Connor, R. M., Burns, P. B., Ha-Ngoc, T., Scarpato, K., Khan, W., Kang, G. and Ward, H. (2009). Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro . Eukaryotic Cell 8, 461469.CrossRefGoogle ScholarPubMed
Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. (2011). SignalP 4·0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.CrossRefGoogle ScholarPubMed
Ponnusamy, M. P., Seshacharyulu, P., Lakshmanan, I., Vaz, A. P., Chugh, S. and Batra, S. K. (2013). Emerging role of mucins in epithelial to mesenchymal transition. Current Cancer Drug Targets 13, 945956.CrossRefGoogle ScholarPubMed
Roger, E., Gourbal, B., Grunau, C., Pierce, R. J., Galinier, R. and Mitta, G. (2008 a). Expression analysis of highly polymorphic mucin proteins (Sm PoMuc) from the parasite Schistosoma mansoni . Molecular and Biochemical Parasitology 157, 217227.CrossRefGoogle ScholarPubMed
Roger, E., Grunau, C., Pierce, R. J., Hirai, H., Gourbal, B., Galinier, R., Emans, R., Cesari, I. M., Cosseau, C. and Mitta, G. (2008 b). Controlled chaos of polymorphic mucins in a metazoan parasite (Schistosoma mansoni) interacting with its invertebrate host (Biomphalaria glabrata). PLoS Neglected Tropical Diseases 2, e330.CrossRefGoogle Scholar
Roger, E., Mitta, G., Mone, Y., Bouchut, A., Rognon, A., Grunau, C., Boissier, J., Theron, A. and Gourbal, B. E. (2008 c). Molecular determinants of compatibility polymorphism in the Biomphalaria glabrata/Schistosoma mansoni model: new candidates identified by a global comparative proteomics approach. Molecular and Biochemical Parasitology 157, 205216.CrossRefGoogle ScholarPubMed
Santos, G. B., Espinola, S. M., Ferreira, H. B., Margis, R. and Zaha, A. (2014). Rapid detection of Echinococcus species by a high-resolution melting (HRM) approach. Parasites and Vectors 6, 327.CrossRefGoogle Scholar
Schmid-Hempel, P. (2009). Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364, 8598.CrossRefGoogle ScholarPubMed
Spithill, T. M., Smooker, P. M., Copeman, D. B. (1999). Fasciola gigantica: epidemiology, control, immunology and molecular biology. In Fasciolosis (ed. Dalton, J. P.), pp. 465525. CABI Publishing, Oxin, UK.Google Scholar
Staden, R. (1996). The Staden sequence analysis package. Molecular Biotechnology 5, 233241.CrossRefGoogle ScholarPubMed
Tarasuk, M., Vichasri Grams, S., Viyanant, V. and Grams, R. (2009). Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Molecular and Biochemical Parasitology 167, 6071.CrossRefGoogle Scholar
Theodoropoulos, G., Hicks, S. J., Corfield, A. P., Miller, B. G. and Carrington, S. D. (2001). The role of mucins in host-parasite interactions: Part II – helminth parasites. Trends Parasitology 17, 130135.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cancela supplementary material

Cancela supplementary material 1

Download Cancela supplementary material(File)
File 12.3 MB