Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:03:05.952Z Has data issue: false hasContentIssue false

Expression and characterization of a phospholipid hydroperoxide glutathione peroxidase gene in Schistosoma japonicum

Published online by Cambridge University Press:  18 August 2015

YING ZHANG
Affiliation:
Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
YUAN HE
Affiliation:
Department of Medical Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
LI HE
Affiliation:
Department of Medical Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
HONGYING ZONG
Affiliation:
Department of Medical Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
GUOBIN CAI*
Affiliation:
Department of Medical Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
*
*Corresponding author. Department of Medical Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China. E-mail: [email protected]

Summary

Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a major antioxidant enzyme, which plays unique roles in the protection of cells against oxidative stress by catalysing reduction of lipid hydroperoxides. We isolated and characterized a full-length cDNA sequence encoding GPx gene from a blood fluke, Schistosoma japonicum (designated SjGPx), which contained an in-frame TGA codon for selenocysteine (Sec) and a concurrent Sec insertion sequence in its 3′-untranslated region. Protein encoded by SjGPx demonstrated a primary structure characteristic to the PHGPx family, including preservation of catalytic domains and absence of the subunit interaction domains. Semi-quantitative reverse transcription PCR and Western blotting showed that the SjGPx was mainly expressed in the female adults and eggs. RNA interference approach was employed to investigate the effects of knockdown of SjGPx. SjGPx expression level was significantly reduced on the 5th day post-RNAi. Significantly reduction in GPx enzyme activities, as well as obvious changes in morphology of intrauterine eggs followed the reduction in SjGPx transcript level. We observed a 63·04% reduction in GPx activity and the eggs severely deformed. Our results revealed that SjGPx protein might be involved in the provision of enzyme activity during egg production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arthur, J. R. (2000). The glutathione peroxidases. Cellular and Molecular Life Sciences 57, 18251835.CrossRefGoogle ScholarPubMed
Bae, Y. A., Kim, S. H., Ahn, C. S., Kim, J. G. and Kong, Y. (2015). Molecular and biochemical characterization of Paragonimus westermani tyrosinase. Parasitology 142, 807815.Google Scholar
Brigelius-Flohé, R., Aumann, K. D., Blöcker, H., Gross, G., Kiess, M., Klöppel, K. D., Maiorino, M., Roveri, A., Schuckelt, R., Usani, F., Wingender, E. and Flohé, L. (1994). Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. Journal of Biological Chemistry 269, 73427348.Google Scholar
Cai, G., Bae, Y., Zhang, Y., He, Y., Jiang, M. and He, L. (2009). Expression and characterization of two tyrosinases from the trematode Schistosoma japonicum . Parasitology Research 104, 601609.CrossRefGoogle ScholarPubMed
Cai, G. B., Bae, Y. A., Kim, S. H., Sohn, W. M., Lee, Y. S., Jiang, M. S., Kim, T. S. and Kong, Y. (2008). Vitellocyte-specific expression of hydroperoxide glutathione peroxidases in Clonorchis sinensis . International Journal for Parasitology 38, 16131623.Google Scholar
Callahan, H. L., Crouch, R. K. and James, E. R. (1988). Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitology Today 4, 218225.Google Scholar
Cheng, G., Fu, Z., Lin, J., Shi, Y., Zhou, Y., Jin, Y. and Cai, Y. (2009). In vitro and in vivo evaluation of small interference RNA-mediated gynaecophoral canal protein silencing in Schistosoma japonicum . The Journal of Gene Medicine 11, 412421.Google Scholar
Cordingley, J. S. (1987). Trematode eggshells: novel protein biopolymers. Parasitology Today 22, 341344.Google Scholar
Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews 82, 4795.Google Scholar
Epp, O., Ladenstein, R. and Wendel, A. (1983). The refined structure of the selenoenzyme glutathione peroxidase at 0·2-nm resolution. European Journal of Biochemistry 133, 5169.CrossRefGoogle ScholarPubMed
Hancok, J. T., Desikan, R. and Neill, S. J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochemistry Society Transactions 29, 345350.Google Scholar
Henkle-Dührsen, K. and Kampkötter, A. (2001). Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology 114, 129142.CrossRefGoogle ScholarPubMed
He, Y., Cai, G., Ni, Y., Li, Y., Zong, H. and He, L. (2012). siRNA-mediated knockdown of two tyrosinase genes from Schistosoma japonicum cultured in vitro . Experimental Parasitology 132, 394402.CrossRefGoogle ScholarPubMed
Imai, H. and Nakagawa, Y. (2003). Biological significance of phospholipids hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biology and Medicine 34, 145169.Google Scholar
Kim, S. H., Cai, G. B., Bae, Y. A., Lee, E. G., Lee, Y. S. and Kong, Y. (2009). Two novel phospholipid hydroperoxide glutathione peroxidase genes of Paragonimus westermani induced by oxidative stress. Parasitology 136, 553565.Google Scholar
Krautz-Peterson, G., Radwanska, M., Ndegwa, D., Shoemaker, C. B. and Skelly, P. J. (2007). Optimizing gene suppression in schistosomes using RNA interference. Molecular and Biochemical Parasitology 2, 194202.Google Scholar
Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigó, R. and Gladyshev, V. N. (2003). Characterization of mammalian selenoproteomes. Science 300, 14391443.Google Scholar
Kumagai, T., Osada, Y., Ohta, N. and Kanazawa, T. (2009). Peroxiredoxin-1 from Schistosoma japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide. Molecular and Biochemical Parasitology 164, 2631.CrossRefGoogle Scholar
McManus, D. P., Hu, W., Brindley, P. J., Feng, Z. and Han, Z. G. (2004). Schistosome transcriptome analysis at the cutting edge. Trends in Parasitology 20, 301304.CrossRefGoogle ScholarPubMed
Mei, H. and LoVerde, P. T. (1995). Schistosoma mansoni: cloning the gene encoding glutathione peroxidase. Experimental Parasitology 80, 319322.Google Scholar
Mei, H., Thakur, A., Schwarts, J. and LoVerde, P. T. (1996). Expression and characterization of glutathione peroxidase activity in the human blood fluke Schistosoma mansoni . Infection Immunity 64, 42994306.CrossRefGoogle ScholarPubMed
Mkoji, G. M., Smith, J. M. and Prichard, R. K. (1988). Antioxidant systems in Schistosoma mansoni: correlation between susceptibility to oxidant killing and the levels of scavengers of hydrogen peroxide and oxygen free radicals. International Journal for Parasitology 18, 661666.Google Scholar
Morales, M. E., Rinaldi, G., Gobert, G. N., Kines, K. J., Tort, J. F. and Brindley, P. J. (2008). RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. Molecular and Biochemical Parasitology 157, 160168.Google Scholar
Mourão, M. M., Dinguirard, N., Franco, G. R. and Yoshino, T. P. (2009). Phenotypic screen of early developing larvae of the blood Fluke, Schistosoma mansoni, using RNA interference. PLoS Neglected Tropical Diseases 3, e502.Google Scholar
Roche, C., Liu, J. L., LePresle, T., Capron, A. and Pierce, R. J. (1996). Tissue localization and stage-specific expression of the phospholipid hydroperoxide glutathione peroxidase of Schistosoma mansoni . Molecular and Biochemical Parasitology 75, 187195.Google Scholar
Selkirk, M. E., Smith, V. P., Thomas, G. R. and Gounaris, K. (1998). Resistance of filarial nematode parasites to oxidative stress. International Journal for Parasitology 28, 13151332.Google Scholar
Sies, H. (1993). Strategies of antioxidant defense. European Journal of Biochemistry 215, 213219.Google Scholar
Stadtman, T. C. (1996). Selenocysteine. Annual Review of Biochemistry 65, 83100.CrossRefGoogle ScholarPubMed
Tabara, H., Grishok, A. and Mello, C. C. (1998). RNAi in C. elegans: soaking in the genome sequence. Science 282, 430431.Google Scholar
Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. and Driscoll, M. (2000). Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics 2, 180183.Google Scholar
Tchoubrieva, E. B., Ong, P. C., Pike, R. N., Brindley, P. J. and Kalinna, B. H. (2010). Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni . Cellular and Molecular Life Sciences 67, 37393748.Google Scholar
Ursini, F. and Bindoli, A. (1987). The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemistry and Physics of Lipids 44, 255276.CrossRefGoogle ScholarPubMed
Williams, D. L., Pierce, R. J., Cookson, E. and Capron, A. (1992). Molecular cloning and sequencing of glutathione peroxidase from Schistosoma mansoni . Molecular and Biochemical Parasitology 52, 127130.Google Scholar
Wyler, D. J. (1992). Why does liver fibrosis occur in schistosomiasis? Parasitology Today 8, 277279.Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 2533.Google Scholar
Zelck, U. E. and von Janowsky, B. (2004). Antioxidant enzymes in intramolluscan Schistosoma mansoni and ROS-induced changes in expression. Parasitology 128, 493501.CrossRefGoogle ScholarPubMed