Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T21:25:47.276Z Has data issue: false hasContentIssue false

The evolution of acquired immunity to parasites

Published online by Cambridge University Press:  06 April 2009

N. A. Mitchison
Affiliation:
Imperial Cancer Research Fund, Tumour Immunology Unit, University College London, Gower Street, London WC1E 6BT

Summary

Evolutionary pressures exerted by parasites on the immune system, and vice versa, are surveyed from a speculative viewpoint. New information is presented about the possible channelling of suppression by MHC Class II genes in the mouse, where a novel pattern of dominant unresponsiveness mediated by H-2Ab is described. In addition, the hypothesis is advanced that phosphatidyl–inositol anchorage on the surface of parasites may represent a novel evasion mechanism, in which the spread of the immune response by epitope linkage is inhibited by host phospholipase.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, R. F. (1986). Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunology 8, 529.CrossRefGoogle ScholarPubMed
Anders, R. F., Coppel, R. L., Brown, G. V. & Kemp, D. J. (1988). Antigens with repeated sequences from the asexual blood stages of Plasmodium falciparum. Progress in Allergy 41, 148–72.Google Scholar
Arif, M., Mitchison, N. A. & Zuckerman, A. J. (1988). Genetics of nonresponders to Hepatitis B surface antigen and possible ways of circumventing ‘nonresponse’. In Viral Hepatitis and Liver Disease (ed. Zuckerman, A. J.) pp. 714–16. New York: Alan R. Liss.Google Scholar
Bulow, R. & Overath, P. (1986). Purification and characterization of the membrane-form variant surface glycoprotein hydrolase of Trypanosoma brucei. Journal of Biological Chemistry 261, 11918–23.CrossRefGoogle ScholarPubMed
Burgest, H. G. & Kvist, S. (1987). The E3/19K protein of adenovirus type 2 binds to the domains of the histocompatibility antigen required for CTL recognition. EMBO Journal 6, 2019–26.Google Scholar
Cohen, I. R. (1988). The self, the world and autoimmunity. Scientific American 258, 5260.Google Scholar
Espinoza, B., Tarrab, Hazdai-R., Silman, I. & Arnon, R. (1988). Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Molecular and Biochemical Parasitology 29, 171–9.CrossRefGoogle Scholar
Faldo, L. D., Sullivan, K., Benacerraf, B., Mescher, M. F. & Rock, K. L. (1985). Analysis of antigen presentation by metabolically inactive accessory cells and their isolated membranes. Proceedings of the National Academy of Sciences, USA 82, 6647–51.CrossRefGoogle Scholar
Fishelson, Z. & Arnon, R. (1987). Schistosoma mansoni and complement. Scientific Activities of the Weizmann Institute of Science, Israel, p. 276.Google Scholar
Fisher, A. G., Goff, L. K., Lightstone, L., Marvel, J., Mitchison, N. A., Poirier, G., Stauss, H. & Zamoyska, R. (1989). Problems in the physiology of Class I and Class II MHC molecules, and of CD45. In Proceedings of the Immunological Recognition Symposium, Cold Spring Harbor Laboratory (in the Press).Google Scholar
Fox, J. A., Duzzenko, M., Ferguson, M. A. J., Low, M. G. & Cross, G. A. M. (1986). Purification and characterization of a novel glycan-phosphatidylinositol-specific phospholipase C from Trypanosoma brucei. Journal of Biological Chemistry 261, 15767–71.Google Scholar
Fox, J. A., Soliz, N. M. & Saltiel, A. R. (1987). Purification of a phosphatidylinositol-glycan-specific phospholipase C from liver plasma membranes: a possible target of insulin action. Proceedings of the National Academy of Sciences, USA 84, 2663–7.Google Scholar
Garcia-Penarrubia, P., Koster, F. T., Kelley, R. O., Mcdowell, T. D. & Bankhurst, A. D. (1989). Antibacterial activity of human natural killer cells. Journal of Experimental Medicine 169, 99.Google Scholar
Grundy, J. E., McKeating, J. A., Ward, P. J., Sanderson, A. R. & Griffiths, P. D. (1987). Beta-2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables Class I HLA molecules to be used as a virus receptor. Journal of General Virology 68, 793803.Google Scholar
Hereld, D., Krakow, J. L., Bangs, J. D., Hart, G. W. & Englund, P. T. (1986). A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. Journal of Biological Chemistry 261, 13813–19.Google Scholar
Hirayama, K., Matsushita, S., Kileuili, I., Iuchi, M., Ohta, N. & Sasazuki, T. (1987). HLA-DQ in epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature, London 327, 426–30.Google Scholar
Ivanyi, J. & Sharpe, K. (1986). Control by H-2 genes of murine antibody responses to protein antigens of Mycobacterium tuberculosis. Immunology 59, 329–32.Google Scholar
Kappler, J., Roehm, N. & Marrack, P. (1987). T cell tolerance by clonal elimination in the thymus. Cell 49, 273.CrossRefGoogle ScholarPubMed
Low, M. G. & Prasad, A. R. S. (1988). A phospholypase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proceedings of the National Academy of Sciences, USA 85, 1980–4.Google Scholar
Low, M. G. & Saltiel, A. R. (1988). Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239, 268–75.Google Scholar
Lucas, S., Sewankambo, N., Nambuya, A., Nsubuga, P., Goodgame, R., Mugerwa, J. & Carswell, J. W. (1988). The morbid anatomy of African AIDS. In AIDS and Associated Cancers in Africa (ed. Giraldo, G., Beth-Giraldo, E., Clumeck, N., Gharbi, Md.-R., Kyalwazi, S. K. & de Thé, G.) 2nd International Symposium, Naples, October 7–9, pp. 124–33, Basel: Karger.Google Scholar
Mitchison, N. A. (1981). Information transfer between the minor antigen and T cell receptor repertoires. Scandinavian Journal of Immunology 14, 631–5.Google Scholar
Mitchison, N. A. (1982). T-cell recognition and interaction in the immune system. In Receptors, Antibodies and Disease (ed. Evered, D. & Whelan, J.), pp. 5781. London: Pitman Medical Ltd.Google Scholar
Mitchison, N. A. (1989). Suppression of the response to murine alloantigens: four-cell type clusters, function-flipping and idiosyncratic responses. Chemical Immunology 46, 157–66.Google ScholarPubMed
Mitchison, N. A. & Kinlen, L. (1980). Present concepts in immune surveillance. In Immunology '80 (4th International Congress of Immunology, Paris, July 1980), (ed. Fougereau, M. & Dausset, J.), pp. 641–50. London: Academic Press.Google Scholar
Mitchison, N. A. & Oliveira, D. B. G. (1986). Chronic infection as a major force in the evolution of the suppressor T cell system. Parasitology Today 2, 312–13.CrossRefGoogle Scholar
Ohta, N., Hayashi, M., Tormis, L. C., Blas, B. L., Noseras, J. S. & Sasazuki, T. (1987). Immunogenetic factors involved in the pathogenesis of distinct clinical manifestations of Schistosomiasis japonica in the Philippine populations. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 292–6.Google Scholar
Oliveira, D. B. G. & Mitchison, N. A. (1989). Immune suppression genes. Clinical and Experimental Immunology 75, 167–77.Google ScholarPubMed
Ottenhoff, T. (1989). Antigen specific T cell non-responsiveness in man: leprosy an immunological model disease. Proceedings of the 7th International Congress of Immunology,Berlin,July 1989.Google Scholar
Sasazuki, T. & Matsushita, S. (1987). MHC-linked immune suppression genes determine the phenotype of immune response to some natural antigens in human. Journal of Immunogenetics 14, 99101.Google Scholar
Shellam, G. R., Flexman, J. P., Farrell, H. E. & Papadimitriou, J. M. (1985). The genetic background modulates the effect of the beige gene on susceptibility to cytomegalovirus infection in mice. Scandinavian Journal of Immunology 22, 147–55.Google Scholar
Eden, Van W., Gonzalez, N. M., Vries, De R. R., Convit, J. & Rood, Van J. J. (1985). HLA-linked control of predisposition to lepromatous leprosy. Journal of Infections Diseases 151, 914.Google Scholar