Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T13:14:00.264Z Has data issue: false hasContentIssue false

The evaluation of potential global morbidity attributable to intestinal nematode infections

Published online by Cambridge University Press:  06 April 2009

M. S. Chan
Affiliation:
WHO Collaborating Centre for the Epidemiology of Intestinal Parasitic Infections, Department of Biology, Imperial College, London SW7 2BB, UK
G. F. Medley
Affiliation:
WHO Collaborating Centre for the Epidemiology of Intestinal Parasitic Infections, Department of Biology, Imperial College, London SW7 2BB, UK
D. Jamison
Affiliation:
School of Public Health, University of California at Los Angeles, Los Angeles, CA, USA
D. A. P. Bundy
Affiliation:
WHO Collaborating Centre for the Epidemiology of Intestinal Parasitic Infections, Department of Biology, Imperial College, London SW7 2BB, UK

Summary

This paper presents a method of estimating the potential global morbidity due to human intestinal nematode infections (Ascaris lumbricoides, Trichuris trichiura and hookworms), based on the observed prevalence of infection. The method relies on the observed relationships between prevalence and intensity of infection, and between worm burden and potential morbidity. This approach is shown to be sensitive to the precision of the original prevalence estimates and, in particular, to the degree of spatial heterogeneity in levels of infection. The estimates presented here indicate that several tens of millions of children are likely to suffer developmental consequences from infection, and suggest that the global disease burden of geohelminthiasis may be significantly greater than was supposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1982). Transmission dynamics and control of infectious disease agents. In Population Biology of Infectious Diseases (ed. Anderson, R. M. & May, R. M.), pp. 149–76. Berlin: Springer.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Anderson, R. M. & Medley, G. F. (1985). Community control of helminth infections of man by mass and selective chemotherapy. Parasitology 90, 629–60.CrossRefGoogle Scholar
Booth, M. & Bundy, D. A. P. (1992). Comparative prevalences of Ascaris lumbricoides, Trichuris trichiura and hookworm infections and the prospects for combined control. Parasitology 105, 151–7.CrossRefGoogle ScholarPubMed
Bundy, D. A. P. (1990). Is the hookworm just another geohelminth? In Hookworm Disease, Current Status and New Directions (ed. Schad, G. A. & Warren, K. S.), pp. 147–64. London: Taylor & Francis.Google Scholar
Bundy, D. A. P., Chandiwana, S. K., Homeida, M. M. A., Yoon, S. & Mott, K. E. (1991). The epidemiological implications of a multi-infection approach to the control of human helminth infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 274–6.CrossRefGoogle Scholar
Bundy, D. A. P. & Cooper, E. S. (1989). Trichuris and trichuriasis in humans. Advances in Parasitology 28, 107–73.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Didier, J. M. & Simmons, I. (1987). Epidemiology and population dynamics of Ascaris lumbricoides and Trichuris trichiura in the same community. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 987–93.CrossRefGoogle ScholarPubMed
Bundy, D. A. P. & Guyatt, H. L. (1990). Global distribution of parasitic worm infections. Report to the Division of Science, Technical and Environmental Education, UNESCO Project to Increase School Performance through Improved Nutrition and Health.Google Scholar
Bundy, D. A. P. & Medley, G. F. (1992). Immunoepidemiology of human geohelminthiasis: ecological and immunological determinants of worm burden. Parasitology 104, S105–S119.CrossRefGoogle ScholarPubMed
Cooper, E. S., Bundy, D. A. P. & Henry, F. J. (1986). Chronic dysentery, stunting, and whipworm infestation. Lancet ii, 280–1.CrossRefGoogle Scholar
Cooper, E. S., Bundy, D. A. P., MacDonald, T. T. & Golden, M. H. N. (1990). Growth suppression in the Trichuris dysentery syndrome. European Journal of Clinical Nutrition 44, 285–91.Google ScholarPubMed
Crompton, D. W. T. (1988). The prevalence of ascariasis. Parasitology Today 4, 162–9.CrossRefGoogle ScholarPubMed
Crompton, D. W. T. (1989). Prevalence of ascariasis. In Ascariasis and its Prevention and Control (ed. Crompton, D. W. T., Nesheim, M. C. & Pawlowski, Z. S.), pp. 4569. London: Taylor & Francis.Google Scholar
Guyatt, H. L. (1992). Parasite population biology and the design and evaluation of helminth control programmes. Ph.D. thesis, University of London.Google Scholar
Guyatt, H. L. & Bundy, D. A. P. (1991). Estimating prevalence of community morbidity due to intestinal helminths: prevalence of infection as an indicator of the prevalence of disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 778–82.CrossRefGoogle ScholarPubMed
Guyatt, H. L. & Bundy, D. A. P. (1993). Estimation of intestinal nematode prevalence: influence of parasite mating patterns. Parasitology 107, 99106.CrossRefGoogle ScholarPubMed
Guyatt, H. L., Bundy, D. A. P., Medley, G. F. & Grenfell, B. T. (1990). The relationship between the frequency distribution of Ascaris lumbricoides and the prevalence and intensity of infection in human communities. Parasitology 101, 139–43.CrossRefGoogle ScholarPubMed
Guyatt, H. L. & Evans, D. (1992). Economic considerations for helminth control. Parasitology Today 8, 397402.CrossRefGoogle ScholarPubMed
Lwambo, N. J. S., Bundy, D. A. P. & Medley, G. F. H. (1992). A new approach to morbidity risk assessment in hookworm endemic communities. Epidemiology and Infection 108, 469–81.CrossRefGoogle ScholarPubMed
May, R. M. & Anderson, R. M. (1984). Spatial heterogeneity and the design of immunisation programs. Mathematical Bioscience 72, 83111.CrossRefGoogle Scholar
Medley, G. F., Guyatt, H. L. & Bundy, D. A. P. (1993). A quantitative framework for evaluating the effect of community treatment on the morbidity due to ascariasis. Parasitology 106, 211–21.CrossRefGoogle ScholarPubMed
Muller, R. (1975). Worms and Disease: a Manual of Medical Helminthology. London: William Heinemann.Google Scholar
Nesheim, M. C. (1989). Ascariasis and human nutrition. In Ascariasis and its Prevention and Control (ed. Crompton, D. W. T., Nesheim, M. C. & Pawlowski, Z. S.), pp. 87100. London: Taylor & Francis.Google Scholar
Nokes, C., Grantham-McGregor, S. M., Sawyer, A. W., Cooper, E. S. & Bundy, D. A. P. (1992). Parasitic helminth infection and cognitive function in school children. Proceedings of the Royal Society 247, 7781.Google ScholarPubMed
Pawlowski, Z. S. & Davis, A. (1989). Morbidity and mortality in ascariasis. In Ascariasis and its Prevention and Control (ed. Crompton, D. W. T., Nesheim, M. C. & Pawlowski, Z. S.), pp. 7186. London: Taylor & Francis.Google Scholar
Savioli, L., Bundy, D. A. P. & Tomkins, A. M. (1992). Intestinal parasitic infections: a soluble public health problem. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 353–4.CrossRefGoogle ScholarPubMed
Stephenson, L. S.. (1987). Impact of Helminth Infections on Human Nutrition: Schistosomes and Soil Transmitted Helminths. New York: Taylor & Francis.Google Scholar
Stephenson, L. S., Latham, M. C., Kurz, K. M., Kinoti, S. N. & Brigham, H. (1989). Treatment with a single dose of albendazole improves growth of Kenyan schoolchildren with hookworm, Trichuris trichiura and Ascaris lumbricoides infections. American Journal of Tropical Medicine and Hygiene 41, 7887.CrossRefGoogle ScholarPubMed
Stephenson, L. S., Latham, M. C., Kinoti, S. N., Kurz, K. M. & Brigham, H. (1990). Improvements in physical fitness of Kenyan schoolboys infected with hookworm, Trichuris trichiura and Ascaris lumbricoides following a single dose of albendazole. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 277–82.CrossRefGoogle ScholarPubMed
Stoll, N. R. (1947). This wormy world. Journal of Parasitology 33, 118.Google ScholarPubMed
Tomkins, A. & Watson, F. (1989). Malnutrition and Infection: A Review. United Nations: ACC/SCN.Google Scholar
De Vlas, S. J. & Gryseels, B. (1992). Underestimation of Schistosoma mansoni prevalences. Parasitology Today 8, 274–7.CrossRefGoogle ScholarPubMed
Warren, K. S., Bundy, D. A. P., Anderson, R. M., Davis, A. R., Henderson, D. A., Jamison, D. T., Prescott, N. & Senft, A. (1993). Helminth infections. In Disease Control Priorities in Developing Countries (ed. Jamison, D. T., Mosley, W. H., Measham, A. R. & Bobadilla, J. L.), pp. 131–60. Oxford: Oxford University Press.Google Scholar
World Health Organization (1987). Prevention and control of intestinal parasitic infections. WHO Technical Report Series No. 749. Geneva: World Health Organization.Google Scholar
World Health Organization (1992). Global Health Situation and Projections, Estimates. Division of Epidemiological Surveillance and Health Situation Assessment, WHO/HST/92.1. Geneva: World Health Organization.Google Scholar
World Bank (1993). World Development Report 1993: Investing in Health. Washington D.C.: World Bank.Google Scholar
Yu, S. H., Jiang, Z. X. & Xu, L. Q. (1988). The present status of soil-transmitted helminthiases in China. In Collected Papers on the Control of Soil-Transmitted Helminthiases, vol. IV, pp. 517. Beijing: Asian Parasite Control Organization.Google Scholar