Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:59:39.092Z Has data issue: false hasContentIssue false

The European eel may tolerate multiple infections at a low biological cost

Published online by Cambridge University Press:  25 February 2015

ELVIRA MAYO-HERNÁNDEZ*
Affiliation:
Departamento de Sanidad Animal, Universidad de Murcia, 30100 Murcia, España Campus de Excelencia Internacional Regional ‘Campus Mare Nostrum’, Universidad de Murcia, Espinardo, 30100 Murcia, España
EMMANUEL SERRANO
Affiliation:
CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, España
JOSE PEÑALVER
Affiliation:
Campus de Excelencia Internacional Regional ‘Campus Mare Nostrum’, Universidad de Murcia, Espinardo, 30100 Murcia, España Servicio de Pesca y Acuicultura, D.G. de Ganadería y Pesca, Consejería de Agricultura y Agua de la Región de Murcia, JUAN XXIII, 30071 Murcia, España
ALFONSA GARCÍA-AYALA
Affiliation:
Campus de Excelencia Internacional Regional ‘Campus Mare Nostrum’, Universidad de Murcia, Espinardo, 30100 Murcia, España Departamento de Biología Celular e Histología, Universidad de Murcia, 30100 Murcia, Spain
ROCÍO RUIZ DE YBÁÑEZ
Affiliation:
Departamento de Sanidad Animal, Universidad de Murcia, 30100 Murcia, España Campus de Excelencia Internacional Regional ‘Campus Mare Nostrum’, Universidad de Murcia, Espinardo, 30100 Murcia, España
PILAR MUÑOZ
Affiliation:
Departamento de Sanidad Animal, Universidad de Murcia, 30100 Murcia, España Campus de Excelencia Internacional Regional ‘Campus Mare Nostrum’, Universidad de Murcia, Espinardo, 30100 Murcia, España
*
*Corresponding author: Departamento de Sanidad Animal, Universidad de Murcia, Espinardo. CP: 30100 Murcia, Spain E-mail: [email protected]

Summary

Most animals are concurrently infected with multiple parasites, and interactions among them may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the costs of co-infection, we investigated the relationships among 189 European eel (Anguilla anguilla) from Mar Menor, parasites (richness and intensity) and eel's ‘health status’ (fluctuant asymmetry, splenic somatic index and the scaled mass index) by partial least squares regression. We found a positive relationship with 44% of the health status variance explained by parasites. Contracaecum sp. (Nematoda: Anisakidae) was the strongest predictor variable (44·72%) followed by Bucephalus anguillae (Platyhelminthes: Bucephalidae), (29·26%), considered the two most relevant parasites in the analysis. Subsequently, 15·67 and 12·01% of the response variables block were explained by parasite richness and Deropristis inflata (Platyhelminthes: Deropristiidae), respectively. Thus, the presence of multiple parasitic exposures with little effect on condition, strongly suggests that eels from Mar Menor tolerate multiparasitism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allenbach, D. M. (2011). Fluctuating asymmetry and exogenous stress in fishes: a review. Reviews in Fish Biology and Fisheries 21, 355376.CrossRefGoogle Scholar
Anderson, R. C. (1992). Nematode Parasites of Vertebrates, CAB International, Wallingford.Google Scholar
Arnott, S. A., Barber, I. and Huntingford, F. A. (2000). Parasite–associated growth enhancement in a fish–cestode system. Proceedings of the Royal Society of London. Series B: Biological Sciences 267, 657663.CrossRefGoogle Scholar
Barton, B. A. and Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1, 326.CrossRefGoogle Scholar
Bell, G. and Burt, A. (1991). The comparative biology of parasite species diversity: internal helminths of freshwater fish. The Journal of Animal Ecology 60, 10471064.CrossRefGoogle Scholar
Berg, O., Adkison, M. D. and Quinn, T. R. (1997). Bilateral asymmetry, sexual dimorphism, and nematode parasites in mature male sockeye salmon Oncorhynchus nerka . Northwest Science 71, 305312.Google Scholar
Bergstrom, C. A. and Reimchen, T. E. (2002). Geographical variation in asymmetry in Gasterosteus aculeatus . Biological Journal of the Linnean Society 77, 922.CrossRefGoogle Scholar
Blanchet, S., Rey, O. and Loot, G. (2010). Evidence for host variation in parasite tolerance in a wild fish population. Evolutionary Ecology 24, 11291139.CrossRefGoogle Scholar
Boots, M. and Bowers, R. G. (1999). Three mechanisms of host resistance to microparasites – avoidance, recovery and tolerance – show different evolutionary dynamics. Journal of Theoretical Biology 201, 1323.CrossRefGoogle ScholarPubMed
Bordes, F. and Morand, S. (2011). The impact of multiple infections on wild animal hosts: a review. Infection Ecology and Epidemiology 1, 7346.CrossRefGoogle ScholarPubMed
Brooker, S., Miguel, E. A., Moulin, S., Luoba, A. I., Bundy, D. A. and Kremer, M. (2000). Epidemiology of single and multiple species of helminth infections among school children in Busia District, Kenya. East African Medicine Journal 77, 157161.Google ScholarPubMed
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Campbell, W. B. and Emlen, J. M. (1996). Developmental instability analysis of BKD-infected spring chinook salmon, Oncorhynchus tshawytscha, prior to seawater exposure. Oikos 77, 540548.CrossRefGoogle Scholar
Costa-Dias, S., Dias, E., Lobón-Cerviá, J., Antunes, C. and Coimbra, J. (2010). Infection by Anguillicoloides crassus in a riverine stock of European eel, Anguilla anguilla . Fisheries Management and Ecology 17, 485492.CrossRefGoogle Scholar
Cox, F. E. G. (2001). Concomitant infections, parasites and immune responses. Parasitology 122, 2338.CrossRefGoogle ScholarPubMed
Dalmo, R. A., Ingebrigtsen, K. and Bøgwald, J. (1997). Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). Journal of Fish Diseases 20, 241273.CrossRefGoogle Scholar
Dezfuli, B. S., Manera, M., Onestini, S. and Rossi, R. (1997). Histopathology of the alimentary canal of Anguilla anguilla L. associated with digenetic trematodes: a light and electron microscopic study. Journal of Fish Diseases 20, 317322.CrossRefGoogle Scholar
Dezfuli, B. S., Szekely, C., Giovinazzo, G., Hills, K. and Giari, L. (2009). Inflammatory response to parasitic helminths in the digestive tract of Anguilla anguilla (L.). Aquaculture 296, 16.CrossRefGoogle Scholar
Dogiel, V. A. (1958). Ecology of the Parasites of Freshwater Fishes, pp. 147, Oliver and Bayd, London.Google Scholar
Escos, J., Alados, C. L., Emlen, J. M. and Alderstein, S. (1995). Developmental instability in the Pacific hake parasitized by myxosporeans Kudoa spp. Transactions of the American Fisheries Society 124, 943945.2.3.CO;2>CrossRefGoogle Scholar
Fazio, G., Lecomte-Finiger, R., Bartrina, J., Moné, H. and Sasal, P. (2005). Macroparasite community and asymmetry of the yellow eel Anguilla anguilla in Salses-Leucate lagoon, Southern France. Bulletin Français de la Pêche et de la Pisciculture 378–379, 99113.CrossRefGoogle Scholar
Ferreira, C. S., Ferreira, M. U. and Nogueira, M. R. (1994). The prevalence of infection by intestinal parasites in an urban slum in Sao Paulo, Brazil. Journal of Tropical Medicine and Hygiene 97, 121127.Google Scholar
Gérard, C., Trancart, T., Amilhat, E., Faliex, E., Virag, L., Feunteun, E. and Acou, A. (2013). Influence of introduced vs native parasites on the body condition of migrant silver eels. Parasite 20, 38.CrossRefGoogle ScholarPubMed
Guidelli, G., Tavechio, W. L. G., Takemoto, R. M. and Pavanelli, G. C. (2011). Relative condition factor and parasitism in anostomid fishes from the floodplain of the Upper Paraná River, Brazil. Veterinary Parasitology 177, 145151.CrossRefGoogle Scholar
Haswell-Elkins, M. R., Elkins, D. B. and Anderson, R. M. (1987). Evidence for predisposition in humans to infection with Ascaris, hookworm, Enterobius and Trichuris in a South Indian fishing community. Parasitology 95, 323337.CrossRefGoogle Scholar
Hoffnagle, T. L., Choudhury, A. and Cole, R. A. (2006). Parasitism and body condition in humpback chub from the Colorado and Little Colorado rivers, Grand Canyon, Arizona. Journal of Aquatic Animal Health 18, 184193.CrossRefGoogle Scholar
ICES. (2009). Workshop on Age Reading of European and American Eel (WKAREA), 20–24 April, Bordeaux, France. ICES CM 2009\ACOM: 48 pp. 66.Google Scholar
Iwama, G. K., Pickering, A. D. and Sumpter, J. P. (2011). Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge, UK.Google Scholar
Kamiya, T., O'Dwyer, K., Nakagawa, S. and Poulin, R. (2014). What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biological Reviews 89, 123134.CrossRefGoogle ScholarPubMed
Kennedy, C. R. (2007). The pathogenic helminth parasites of eels. Journal of Fish Diseases 30, 319334.CrossRefGoogle ScholarPubMed
Khan, R. A. (2012). Host-parasite interactions in some fish species. Journal of Parasitology Research Article ID 237280, 7 pages http://dx.doi.org/10.1155/2012/237280.CrossRefGoogle ScholarPubMed
Khokhlova, I. S., Krasnov, B. R., Kam, M., Burdelova, N. I. and Degen, A. A. (2002). Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus . Journal of Zoology 258, 349354.CrossRefGoogle Scholar
Kortet, R., Taskinen, J., Sinisalo, T. and Jokinen, I. (2003). Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biological Journal of the Linnean Society 78, 117127.CrossRefGoogle Scholar
Lamková, K., Šimková, A., Palíková, M., Jurajda, P. and Lojek, A. (2007). Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitology Research 101, 775789.CrossRefGoogle ScholarPubMed
Lefebvre, F., Mounaix, B., Poizat, G. and Crivelli, A. J. (2004). Impacts of the swimbladder nematode Anguillicola crassus on Anguilla anguilla: variations in liver and spleen masses. Journal of Fish Biology 64, 435447.CrossRefGoogle Scholar
Lefebvre, F., Fazio, G., Mounaix, B. and Crivelli, A. J. (2013). Is the continental life of the European eel Anguilla anguilla affected by the parasitic invader Anguillicoloides crassus? Proceedings of the Royal Society B: Biological Sciences 280, 20122916.CrossRefGoogle ScholarPubMed
Lemly, A. D. and Esch, G. W. (1984). Effects of the trematode Uvulifer ambloplitis on juvenile bluegill sunfish, Lepomis macrochirus: ecological implications. The Journal of Parasitology 70, 475492.CrossRefGoogle Scholar
Leung, B. and Forbes, M. R. (1996). Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience Sainte-Foy 3, 400413.CrossRefGoogle Scholar
Leung, B., Forbes, M. R. and Houle, D. (2000). Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits. The American Naturalist 155, 101115.CrossRefGoogle ScholarPubMed
Luque, J. L. and Poulin, R. (2004). Use of fish as intermediate hosts by helminth parasites: a comparative analysis. Acta Parasitologica 49, 353361.Google Scholar
Lymbery, A. J., Morine, M., Kanani, H. G., Beatty, S. J. and Morgan, D. L. (2014). Co-invaders: The effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife 3, 171177.Google ScholarPubMed
Maan, M. E., Van Rooijen, A., Van Alphen, J. J. and Seehausen, O. L. E. (2008). Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biological Journal of the Linnean Society 94, 5360.CrossRefGoogle Scholar
Maceda-Veiga, A., Green, A. J. and De Sostoa, A. (2014). Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwater Biology 59, 11451160.CrossRefGoogle Scholar
Manning, M. J. (1994). Fishes. In Immunology. A Comparative Approach (ed. Turner, R. J.), pp. 69100. Wiley, New York.Google Scholar
Martínez-Carrasco, C., Serrano, E., de Ybáñez, R. R., Peñalver, J., García, J. A., García-Ayala, A., Moran, S., Muñoz, S. (2011). The European eel – the swim bladder–nematode system provides a new view of the invasion paradox. Parasitology Research 108, 15011506.CrossRefGoogle ScholarPubMed
Mayo-Hernández, E., Peñalver, J., García-Ayala, A., Serrano, E., Muñoz, P. and Ruiz de Ybáñez, R. (2014). Richness and diversity of helminth species in eels from a hypersaline coastal lagoon, Mar Menor, South-East Spain. Journal of Helminthology 31, 17.Google Scholar
Medzhitov, R., Schneider, D. S. and Soares, M. P. (2012). Disease tolerance as a defense strategy. Science 335, 936941.CrossRefGoogle ScholarPubMed
Møller, A. P. (1992). Parasites differentially increase the degree of fluctuating asymmetry in secondary sexual characters. Journal of Evolutionary Biology 5, 691699.CrossRefGoogle Scholar
Møller, A. P. (2006). A review of developmental instability, parasitism and disease: infection, genetics and evolution. Infection, Genetics and Evolution 6, 133140.CrossRefGoogle ScholarPubMed
Møller, A. P. and Saino, N. (2004). Immune response and survival. Oikos 104, 299304.CrossRefGoogle Scholar
Morand, S. and Poulin, R. (2000). Nematode parasite species richness and the evolution of spleen size in birds. Canadian Journal of Zoology 78, 13561360.CrossRefGoogle Scholar
Needham, C., Kim, H. T., Hoa, N. V., Cong, L. D., Michael, E., Drake, L., Hall, A. and Bundy, D. A. (1998). Epidemiology of soil-transmitted nematode infections in Ha Nam Province Vietnam. Tropical Medicine and International Health 3, 904912.CrossRefGoogle Scholar
Ottová, E., Šimková, A., Jurajda, P., Dávidová, M., Ondračková, M., Pečínková, M. and Gelnar, M. (2005). Sexual ornamentation and parasite infection in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction? Evolutionary Ecology Research 7, 581593.Google Scholar
Ottová, E., Šimková, A. and Morand, S. (2007). The role of major histocompatibility complex diversity in vigour of fish males (Abramis brama L.) and parasite selection. Biological Journal of the Linnean Society 90, 525538.CrossRefGoogle Scholar
Owens, I. P. and Wilson, K. (1999). Immunocompetence: a neglected life history trait or conspicuous red herring? Trends in Ecology and Evolution 14, 170172.CrossRefGoogle Scholar
Palmer, A. R. and Strobeck, C. (1986). Fluctuating asymmetry: measurement, analysis, patterns. Annual review of Ecology and Systematics 17, 391421.CrossRefGoogle Scholar
Palmer, A. R. and Strobeck, C. (2003). Fluctuating asymmetry analyses revisited. In Developmental Instability: Causes and Consequences (ed. Polk, M.), pp. 279319. Oxford University Press, Oxford.CrossRefGoogle Scholar
Pedersen, A. B. and Fenton, A. (2007). Emphasizing the ecology in parasite community ecology. Trends in Ecology and Evolution 22, 133139.CrossRefGoogle ScholarPubMed
Peeler, E. J., Oidtmann, B. C., Midtlyng, P. J., Miossec, L., and Gozlan, R. E. (2011). Non-native aquatic animals introductions have driven disease emergence in Europe. Biological Invasions 13, 12911303.CrossRefGoogle Scholar
Peig, J. and Green, A. J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 18831891.CrossRefGoogle Scholar
Petney, T. N. and Andrews, R. H. (1998). Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. International Journal of Parasitology 28, 377393.CrossRefGoogle ScholarPubMed
Polak, M. (1993). Parasites increase fluctuating asymmetry of male Drosophila nigrospiracula: implications for sexual selection. Genetica 89, 255265.CrossRefGoogle Scholar
Poulin, R. (2000). Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56, 123137.CrossRefGoogle Scholar
Pullan, R. and Brooker, S. (2008). The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? Parasitology 135, 783794.CrossRefGoogle ScholarPubMed
R Development Core Team 2142 (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://wwwR-projectorg. Accessed 14/08/214.Google Scholar
Råberg, L., Graham, A. L., and Read, A. F. (2009). Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 3749.CrossRefGoogle ScholarPubMed
Reimchen, T. E. (1997). Parasitism of asymmetrical pelvic phenotypes in stickleback. Canadian Journal of Zoology 75, 20842094.CrossRefGoogle Scholar
Reimchen, T. E. and Nosil, P. (2001). Lateral plate asymmetry, diet and parasitism in threespine stickleback. Journal of Evolutionary Biology 14, 632645.CrossRefGoogle Scholar
Rohde, K. (1984). Ecology of marine parasites. Helgol. Meeresunters 37, 533.CrossRefGoogle Scholar
Rohlenová, K., Morand, S., Hyršl, P., Tolarová, S., Flajšhans, M., and Šimková, A. (2011). Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio). Parasites and Vectors 4, 120.CrossRefGoogle ScholarPubMed
Rollinson, D. and Hay, S. I. (2011). Advances in Parasitology, V. 74, Academic Press, doi: 10.1016/B978-0-12-385897-9.00013-6.Google Scholar
Roy, B. A. and Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54, 5163.Google ScholarPubMed
Sanchez, G. and Trinchera, L. (2012). plspm: Partial Least Squares Data Analysis Methods. R package version 0.2-2, URL http://CRAN.R-project.org/package=plspm Google Scholar
Santoro, M., Mattiucci, S., Work, T., Cimmaruta, R., Nardi, V., Cipriani, P., Bellsario, B. and Nascetti, G. (2013). Parasitic infection by larval helminths in Antarctic fish: pathological changes and impact on the host body condition index. Diseases of Aquatic Organisms 105, 139148.CrossRefGoogle ScholarPubMed
Sasal, P. and Pampoulie, C. (2000). Asymmetry, reproductive success and parasitism of Pomatoschistus microps in a French lagoon. Journal of Fish Biology 57, 382390.Google Scholar
Schneider, D. S. and Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Reviews Immunology 8, 889895.CrossRefGoogle ScholarPubMed
Seppänen, E., Kuukka, H., Voutilainen, A., Huuskonen, H. and Peuhkuri, N. (2009). Metabolic depression and spleen and liver enlargement in juvenile Arctic charr Salvelinus alpinus exposed to chronic parasite infection. Journal of Fish Biology 74, 553561.CrossRefGoogle ScholarPubMed
Serrano, E. and Millán, J. (2014). What is the price of neglecting parasite groups when assessing the cost of co-infection? Epidemiology and infection 142, 15331540.CrossRefGoogle Scholar
Sitjà-Bobadilla, A. (2008). Living off a fish: A trade-off between parasites and the immune system. Fish and Shellfish Immunology 25, 358372.CrossRefGoogle Scholar
Taskinen, J. and Kortet, R. (2002). Dead and alive parasites: sexual ornaments signal resistance in the male fish, Rutilus rutilus . Evolutionary Ecology Research 4, 919929.Google Scholar
Tierney, J. F., Huntingford, F. A. and Crompton, D. W. T. (1996). Body condition and reproductive status in sticklebacks exposed to a single wave of Schistocephalus solidus infection. Journal of Fish Biology 49, 483493.Google Scholar
Vainikka, A., Taskinen, J., Löytynoja, K., Jokinen, E. I. and Kortet, R. (2009). Measured immunocompetence relates to the proportion of dead parasites in a wild roach population. Functional Ecology 23, 187195.CrossRefGoogle Scholar
Williams, H. and Jones, A. (1994). Parasite Worms of Fish, Taylor and Francis, London, UK.CrossRefGoogle Scholar