Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:58:26.315Z Has data issue: false hasContentIssue false

Estimation of the transmission dynamics of Theileria equi and Babesia caballi in horses

Published online by Cambridge University Press:  27 February 2008

S. R. RÜEGG
Affiliation:
Institute of Parasitology, University of Zürich, 8057 Zürich, Switzerland
D. HEINZMANN
Affiliation:
Institute of Parasitology, University of Zürich, 8057 Zürich, Switzerland Institute of Mathematics, University of Zürich, 8057 Zürich, Switzerland
A. D. BARBOUR
Affiliation:
Institute of Mathematics, University of Zürich, 8057 Zürich, Switzerland
P. R. TORGERSON*
Affiliation:
Institute of Parasitology, University of Zürich, 8057 Zürich, Switzerland
*
*Corresponding author: Institute of Parasitology, University of Zürich, 8057 Zürich, Switzerland. Tel: +41 44 635 85 35. Fax: +41 44 635 89 07. E-mail: [email protected]

Summary

For the evaluation of the epidemiology of Theileria equi and Babesia caballi in a herd of 510 horses in SW Mongolia, several mathematical models of the transmission dynamics were constructed. Because the field data contain information on the presence of the parasite (determined by PCR) and the presence of antibodies (determined by IFAT), the models cater for maternal protection with antibodies, susceptible animals, infected animals and animals which have eliminated the parasite and also allow for age-dependent infection in susceptible animals. Maximum likelihood estimation procedures were used to estimate the model parameters and a Monte Carlo approach was applied to select the best fitting model. Overall, the results are in line with previous experimental work, and add evidence that the epidemiology of T. equi differs from that of Babesia spp. The presented modelling approach provides a useful tool for the investigation of some vector-borne diseases and the applied model selection procedure avoids asymptotical assumptions that may not be adequate for the analysis of epidemiological field data.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avarzed, A., de Waal, D. T., Igarashi, I., Saito, A., Oyamada, T., Toyoda, Y. and Suzuki, N. (1997). Prevalence of equine piroplasmosis in Central Mongolia. Onderstepoort Journal of Veterinary Research 64, 141145.Google ScholarPubMed
Battsetseg, B., Lucero, S., Xuan, X., Claveria, F., Byambaa, B., Battur, B., Boldbaatar, D., Batsukh, Z., Khaliunaa, T., Battsetseg, G., Igarashi, I., Nagasawa, H. and Fujisaki, K. (2002). Detection of equine Babesia spp. gene fragments in Dermacentor nuttalli Olenev 1929 infesting Mongolian horses, and their amplification in egg and larval progenies. Journal of Veterinary Medical Science 64, 727730.CrossRefGoogle ScholarPubMed
Bruning, A. (1996). Equine piroplasmosis an update on diagnosis, treatment and prevention. British Veterinary Journal 152, 139151.CrossRefGoogle ScholarPubMed
Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing 16, 11901208.CrossRefGoogle Scholar
Dallwitz, M. J., Young, A. S., Mahoney, D. F. and Sutherst, R. W. (1987). Comparative epidemiology of tick-borne diseases of cattle with emphasis on modelling. International Journal for Parasitology 17, 629637.CrossRefGoogle ScholarPubMed
de Waal, D. T. and van Heerden, J. (1994). Equine babesiosis. In Infectious Diseases of Livestock with Special Reference to South Africa (ed. Coetzer, J., Thomson, G. R. and Tustin, R. C.), pp. 295304. Oxford University Press, Cape Town.Google Scholar
Donnelly, J., Phipps, L. P. and Watkins, K. L. (1982). Evidence of maternal antibodies to Babesia equi and B. caballi in foals of seropositive mares. Equine Veterinary Journal 14, 126128.CrossRefGoogle Scholar
Friedhoff, K. T. (1988). Transmission of Babesia. In Babesiosis of Domestic Animals and Man (ed. Ristic, M.), pp. 2352. CRC Press, Boca Raton (FL), USA.Google Scholar
Gummow, B., de Wet, C. S. and de Waal, D. T. (1996). A sero-epidemiological survey of equine piroplasmosis in the northern and eastern Cape Provinces of South Africa. Journal of the South African Veterinary Association 67, 204208.Google Scholar
Heuchert, C. M., de Giulli, V. J., de Athaide, D. F., Böse, R. and Friedhoff, K. T. (1999). Seroepidemiologic studies on Babesia equi and Babesia caballi infections in Brazil. Veterinary Parasitology 85, 111.CrossRefGoogle ScholarPubMed
Hourrigan, J. L. and Knowles, R. C. (1979). Equine piroplamsosis (E.P.). American Association of Equine Practicioners Newsletter 1, 119128.Google Scholar
Mahoney, D. F. (1962). Epidemiology of babesiosis in cattle. Australian Journal of Science 24, 310313.Google Scholar
Mahoney, D. F. (1969). Bovine babesiosis: A study of factors concerned in transmission. Annals of Tropical Medicine and Parasitology 6, 114.CrossRefGoogle Scholar
Mahoney, D. F. and Ross, D. R. (1972). Epizootiological factors in the control of bovine babesiosis. Australian Veterinary Journal 48, 292298.CrossRefGoogle ScholarPubMed
Medley, G. F., Perry, B. D. and Young, A. S. (1993). Preliminary analysis of the transmission dynamics of Theileria parva in eastern Africa. Parasitology 106, 251264.CrossRefGoogle ScholarPubMed
Randolph, S. E. and Nuttall, P. A. (1994). Nearly right or precisely wrong? Natural versus laboratory studies of vector-borne diseases. Parasitology Today 10, 458462.CrossRefGoogle ScholarPubMed
Ross, D. R. and Mahoney, D. F. (1974). Bovine babesiasis: computer simulation of Babesia argentina parasite rates in Bos taurus cattle. Annals of Tropical Medicine and Parasitology 68, 385392.CrossRefGoogle ScholarPubMed
Rüegg, S. R., Torgerson, P. R., Deplazes, P. and Mathis, A. (2007). Age-dependent dynamics of Theileria equi and Babesia caballi infections in southwest Mongolia based on IFAT and/or PCR prevalence data from domestic horses and ticks. Parasitology 134, 939947.CrossRefGoogle ScholarPubMed
Rüegg, S. R., Torgerson, P. R., Doherr, M., Deplazes, P., Böse, R., Robert, N. and Walzer, C. (2006). Equine piroplasmoses at the reintroduction site of the Przewalski's horse (Equus ferus przewalskii) in Mongolia. Journal of Wildlife Diseases 42, 518526.CrossRefGoogle ScholarPubMed
Schein, E. (1988). Equine babesiosis. In Babesiosis of Domestic Animals and Man (ed. Ristic, M.), pp. 197208. CRC Press, Inc., Boca Raton (FL), USA.Google Scholar
Smith, R. D. (1983). Babesia bovis: computer simulation of the relationship between the tick vector, parasite, and bovine host. Experimental Parasitology 56, 2740.CrossRefGoogle ScholarPubMed
Tenter, A. M. (1984). Serodiagnose experimenteller und natuerlicher Piroplasmeninfektionen der Pferde. Doctoral thesis, Tierärztliche Hochschule, Hanover, Germany.Google Scholar