Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:17:00.979Z Has data issue: false hasContentIssue false

Epichromatin is conserved in Toxoplasma gondii and labels the exterior parasite chromatin throughout the cell cycle

Published online by Cambridge University Press:  23 May 2013

LAURA VANAGAS
Affiliation:
Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8·2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
MARIA C. DALMASSO
Affiliation:
Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8·2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
JEAN F. DUBREMETZ
Affiliation:
UMR5539 CNRS, Université de Montpellier II, Montpellier, France
ENRIQUE L. PORTIANSKY
Affiliation:
Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
DONALD E. OLINS
Affiliation:
Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
SERGIO O. ANGEL*
Affiliation:
Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8·2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
*
*Corresponding author. Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8·2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina. E-mail: [email protected]

Summary

Toxoplasma gondii is an apicomplexan intracellular protozoan parasite responsible for toxoplasmosis, a disease with considerable medical and economic impact worldwide. Toxoplasma gondii cells never lose the nuclear envelope and their chromosomes do not condense. Here, we tested the murine monoclonal antibody PL2-6, which labels epichromatin (a conformational chromatin epitope based on histones H2A and H2B complexed with DNA), in T. gondii cultured in human fibroblasts. This epitope is present at the exterior chromatin surface of interphase nuclei and on the periphery of mitotic chromosomes in higher eukaryotes. PL2-6 reacted with T. gondii H2A and H2B histones in Western blot (WB) assays. In addition, the antibody reacted with the nuclear fraction of tachyzoites, as a single band coincident with H2B histone. In the T. gondii tachyzoite stage, PL2-6 also had peripheral nuclear localization, as observed by epifluorescence/confocal microscopy and immunoelectron microscopy. Confocal analysis showed that epichromatin is slightly polarized to one face of the parasite exterior chromatin surface. In replicating tachyzoites, PL2-6 also labels the exterior chromatin surface, covering the face of both segregating nuclei, facing the plasma membrane of the mother cell. The possible role of epichromatin in T. gondii is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Black, M. W. and Boothroyd, J. C. (2000). Lytic cycle of Toxoplasma gondii. Microbiology and Molecular Biology Reviews 64, 607623.CrossRefGoogle ScholarPubMed
Blum, B., Beter, H. and Gross, H. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 9399.CrossRefGoogle Scholar
Dalmasso, M. C., Echeverria, P. C., Zappia, M. P., Hellman, U., Dubremetz, J. F. and Angel, S. O. (2006). Toxoplasma gondii has two lineages of histones 2b (H2B) with different expression profiles. Molecular and Biochemical Parasitology 148, 103107.CrossRefGoogle ScholarPubMed
Dalmasso, M. C., Onyango, D. O., Naguleswaran, A., Sullivan, W. J. Jr. and Angel, S. O. (2009). Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. Journal of Molecular Biology 392, 3347.CrossRefGoogle ScholarPubMed
Dalmasso, M. C., Sullivan, W. J. Jr. and Angel, S. O. (2012). Canonical and variant histones of protozoan parasites. Frontiers in Bioscience 17, 20862105.Google Scholar
Echeverria, P. C., Matrajt, M., Harb, O. S., Zappia, M. P., Costas, M. A., Roos, D. S., Dubremetz, J. F. and Angel, S. O. (2005). Toxoplasma gondii Hsp90 is a potential drug target whose expression and subcellular localization are developmentally regulated. Journal of Molecular Biology 350, 723734.CrossRefGoogle ScholarPubMed
Ferguson, D. J. P. and Dubremetz, J. F. (2007). The ultrastructure of Toxoplasma gondii. In Toxoplasma gondii. The Model Apicomplexan: Perspectives and Methods, 1st Edn. Elsevier, Oxford, UK.Google Scholar
Gissot, M., Walker, R., Delhaye, S., Huot, L., Hot, D. and Tomavo, S. (2012). Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery. PLoS ONE 7, e32671.CrossRefGoogle ScholarPubMed
Henikoff, S. and Ahmad, K. (2005). Assembly of variant histones into chromatin. Annual Review of Cell and Developmental Biology 21, 133153.CrossRefGoogle ScholarPubMed
Heaslip, A. T., Dzierszinski, F., Stein, B. and Hu, K. (2010). TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathogens 6, e1000754.CrossRefGoogle ScholarPubMed
Hu, K., Mann, T., Striepen, B., Beckers, C. J., Roos, D. S. and Murray, J. M. (2002). Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Molecular Biology of the cell 13, 593606.CrossRefGoogle ScholarPubMed
Lopez-Rubio, J. J., Mancio-Silva, L. and Scherf, A. (2009). Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host and Microbe 5, 179190.CrossRefGoogle ScholarPubMed
Lorestani, A., Sheiner, L., Yang, K., Robertson, S. D., Sahoo, N., Brooks, C. F., Ferguson, D. J., Striepen, B. and Gubbels, M. J. (2010). A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis. PLoS ONE 5, e12302.CrossRefGoogle ScholarPubMed
Olins, A. L., Langhans, M., Monestier, M., Schlotterer, A., Robinson, D. G., Viotti, C., Zentgraf, H., Zwerger, M. and Olins, D. E. (2011). An epichromatin epitope: persistence in the cell cycle and conservation in evolution. Nucleus 2, 4760.CrossRefGoogle ScholarPubMed
Prudovsky, I., Vary, C., Markaki, Y., Olins, A. L. and Olins, D. (2012). Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes. Nucleus 3, 200210.CrossRefGoogle ScholarPubMed
Striepen, B., Jordan, C. N., Reiff, S. and van Dooren, G. G. (2007). Building the perfect parasite: cell division in apicomplexa. PLoS Pathogens 3, e78.CrossRefGoogle ScholarPubMed
Weiner, A., Dahan-Pasternak, N., Shimoni, E., Shinder, V., von Huth, P., Elbaum, M. and Dzikowski, R. (2011). 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum. Cellular Microbiology 13, 967977.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Vanagas Supplementary Material

Appendix

Download Vanagas Supplementary Material(Image)
Image 1.1 MB