Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T09:42:29.487Z Has data issue: false hasContentIssue false

Electron microscopic observation of cytoskeletal frame structures and detection of tubulin on the apical region of Cryptosporidium parvum sporozoites

Published online by Cambridge University Press:  27 November 2007

M. MATSUBAYASHI
Affiliation:
Department of Food and Nutrition, Osaka Yuhigaoka Gakuen Junior College, Tennoji-ku, Osaka 543-0073, Japan
H. TAKASE
Affiliation:
Hanaichi Ultrastructure Research Institute, Okazaki, Aichi 444-0076, Japan
I. KIMATA
Affiliation:
Department of Protozoal Diseases, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
H. NAKAGAWA
Affiliation:
Department of Central Laboratory, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
H. TANI
Affiliation:
Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
K. SASAI*
Affiliation:
Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
E. BABA
Affiliation:
Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
*
*Corresponding author: Department of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan. Tel: +81 72 254 9506. Fax: +81 72 254 9918. E-mail: [email protected]

Summary

Cryptosporidium parvum is an intracellular protozoan parasite belonging to the phylum Apicomplexa, and a major cause of waterborne gastroenteritis throughout the world. Invasive zoites of apicomplexan parasites, including C. parvum, are thought to have characteristic organelles on the apical apex; however, compared with other parasites, the cytoskeletal ultrastructure of C. parvum zoites is poorly understood. Thus, in the present study, we ultrastructurally examined C. parvum sporozoites using electron microscopy to clarify the framework of invasive stages. Consequently, at the apical end of sporozoites, 3 apical rings and an electron-dense collar were seen. Two thick central microtubules were seen further inside sporozoites and extended to the posterior region. Using anti-α and -β tubulin antibodies generated from sea urchin and rat brain, both antibodies cross-reacted at the apical region of sporozoites in immunofluorescent morphology. The molecular mass of C. parvum α tubulin antigen was 50 kDa by Western blotting and the observed apical cytoskeletal structures were shown to be composed of α tubulin by immunoelectron microscopy. These results suggested that C. parvum sporozoites were clearly different in their cytoskeletal structure from those of other apicomplexan parasites.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, N., Kimata, I. and Iseki, M. (2002). Identification of genotypes of Cryptosporidium parvum isolates from a patient and a dog in Japan. Journal of Veterinary Medical Science 64, 165168.CrossRefGoogle Scholar
Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G., Tzipori, S., Buck, G. A., Xu, P., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L. and Kapur, V. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441445.CrossRefGoogle ScholarPubMed
Aikawa, M. (1971). Parasitological review. Plasmodium: the fine structure of malarial parasites. Experimental Parasitology 30, 284320.CrossRefGoogle ScholarPubMed
Ashley, E., McGready, R., Proux, S. and Nosten, F. (2006). Malaria. Travel Medicine and Infectious Disease 4, 159173.CrossRefGoogle ScholarPubMed
Black, M. W. and Boothroyd, J. C. (2000). Lytic cycle of Toxoplasma gondii. Microbiology Molecular Biology Reviews 64, 607623.Google Scholar
Bonafonte, M. T., Garmon, D. and Mead, J. R. (1999). Characterization of an alpha-tubulin gene of Cryptosporidium parvum. Journal of Eukaryotic Microbiology 6, 545547.Google Scholar
Chen, X. M., Keithly, J. S., Paya, C. V. and LaRusso, N. F. (2002). Cryptosporidiosis. New England Journal of Medicine 346, 17231731.CrossRefGoogle ScholarPubMed
Daugschies, A. and Najdrowski, M. (2005). Eimeriosis in cattle: current understanding. Journal of Veterinary Medicine and Infectious Diseases and Veterinary Public Health 52, 417427.CrossRefGoogle ScholarPubMed
Dubremetz, J. F. and Elsner, Y. Y. (1979). Ultrastructural study of schizogony of Eimeria bovis in cell cultures. Journal of Protozoology 26, 367376.CrossRefGoogle ScholarPubMed
Fayer, R., Speer, C. A. and Dubey, J. P. (1997). General biology of Cryptosporidium. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R.), pp. 141. CRC Press, Florida, USA.Google Scholar
Gozes, I. and Barnstable, C. J. (1982). Monoclonal antibodies that recognize discrete forms of tubulin. Proceedings of the National Academy of Sciences, USA 79, 25792583.CrossRefGoogle ScholarPubMed
Hanaichi, T., Sato, T., Iwamoto, T., Malavasi-Yamashiro, J., Hoshino, M. and Mizuno, N. (1986). A stable lead by modification of Sato's method. Journal of Electron Microscopy 35, 304306.Google Scholar
Hu, K., Roos, D. S. and Murray, J. M. (2002). A novel polymer of tubulin forms the conoid of Toxoplasma gondii. Journal of Cell Biology 156, 10391050.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.Google Scholar
Lindsay, D. S., Blagburn, B. L. and Toivio-Kinnucan, M. (1991). Ultrastructure of developing Isospora suis in cultured cells. American Journal of Veterinary Research 52, 471473.Google Scholar
Lindsay, D. S., Speer, C. A., Toivio-Kinnucan, M. A., Dubey, J. P. and Blagburn, B. L. (1993). Use of infected cultured cells to compare ultrastructural features of Neospora caninum from dogs and Toxoplasma gondii. American Journal of Veterinary Research 54, 103106.CrossRefGoogle ScholarPubMed
Matsubayashi, M., Kimata, I., Iseki, M., Lillehoj, H. S., Matsuda, H., Nakanishi, T., Tani, H., Sasai, K. and Baba, E. (2005). Cross-reactivities with Cryptosporidium spp. by chicken monoclonal antibodies that recognize avian Eimeria spp. Veterinary Parasitology 128, 4757.CrossRefGoogle ScholarPubMed
Morris, G. M. and Gasser, R. B. (2006). Biotechnological advances in the diagnosis of avian coccidiosis and the analysis of genetic variation in Eimeria. Biotechnology Advances 24, 590603.Google Scholar
Morrissette, N. S. and Sibley, L. D. (2002). Cytoskeleton of apicomplexan parasites. Microbiology and Molecular Biology Reviews 66, 2138.CrossRefGoogle ScholarPubMed
Nichols, B. A. and Chiappino, M. L. (1987). Cytoskeleton of Toxoplasma gondii. Journal of Protozoology 34, 217226.Google Scholar
O'Donoghue, P. J. (1995). Cryptosporidium and cryptosporidiosis in man and animals. International Journal for Parasitology 25, 139195.Google Scholar
Perryman, L. E., Kapil, S. J., Jones, M. L. and Hunt, E. L. (1999). Protection of calves against cryptosporidiosis with immune bovine colostrums induced by a Cryptosporidium parvum recombinant protein. Vaccine 17, 21422149.Google Scholar
Petry, F. and Harris, J. R. (1999). Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. International Journal for Parasitology 29, 12491260.Google Scholar
Piperno, G., LeDizet, M. and Chang, X. J. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. Journal of Cell Biology 104, 289302.Google Scholar
Sagodira, S., Buzoni-Gatel, D., Iochmann, S., Naciri, M. and Bout, D. (1999). Protection of kids against Cryptosporidium parvum infection after immunization of dams with CP15-DNA. Vaccine 17, 23462355.Google Scholar
Sam-Yellowe, T. Y. (1996). Rhoptry organelles of the Apicomplexa: their role in host cell invasion and intracellular survival. Parasitology Today 12, 308316.CrossRefGoogle ScholarPubMed
Tetley, L., Brown, S. M., McDonald, V. and Coombs, G. H. (1998). Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144, 32493255.CrossRefGoogle ScholarPubMed
Uni, S., Iseki, M., Maekawa, T., Moriya, K. and Takada, S. (1987). Ultrastructure of Cryptosporidium muris (strain RN 66) parasitizing the murine stomach. Parasitology Research 74, 123132.Google Scholar
Wiest, P. M., Dong, K. L., Johnson, J. H., Tzipori, S., Boeklheide, K. and Flanigan, T. P. (1994). Effect of colchicine on microtubules in Cryptosporidium parvum. Journal of Eukaryotic Microbiology 41, 66.Google ScholarPubMed
Xiao, L., Fayer, R., Ryan, U. and Upton, S. J. (2004). Cryptosporidium taxonomy: recent advances and implications for public health. Clinical Microbiology Reviews 17, 7297.CrossRefGoogle ScholarPubMed