Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:17:07.009Z Has data issue: false hasContentIssue false

Effects of culture and praziquantel on membrane fluidity parameters of adult Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

S. F. Lima
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
L. Q. Vieira
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
A. Harder
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
J. R. Kusel
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

Summary

Membrane fluidity parameters, lateral diffusion coefficient and mobile fraction were assessed in male and female Schistosoma mansoni teguments immediately after their recovery from infected mice or after 24 or 48 h of culture. Our results show that male and female teguments have different properties and behave differently when in culture. In general, male worms displayed a tendency to increase their lateral diffusion coefficient while females showed a significant reduction. The effects of praziquantel (−) and praziquantel (+) on the fluidity properties of the worm surface were also studied. It was demonstrated that both enantiomers of the drug interact with the tegument inducing a decrease in the average velocity of lipid molecules. However, it is only the active form which reduces the number of molecules that are able to move. In explanation we propose that praziquantel (−) and praziquantel (+) have different ways of inserting into the tegument and that some of the effects of the drug are mediated by altering membrane fluidity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atlas, D., Volsky, D. J. & Levitski, A. (1980). Lateral mobility of beta-receptors involved in adenylate cyclase activation. Biochimica et Biophysica Acta 597, 64–9.CrossRefGoogle ScholarPubMed
Blair, K. L., Bennett, J. L. & Pax, R. A. (1992). Praziquantel: physiological evidence for its site(s) of action in magnesium paralysed Schistosoma mansoni. Parasitology 104, 5966.CrossRefGoogle ScholarPubMed
Brindley, P. J & Sher, A. (1987). The chemotherapeutic effect of praziquantel against Schistosoma mansoni is dependent on host antibody response. Journal of Immunology 139, 215–20.CrossRefGoogle ScholarPubMed
Cox, F. E. G. (1979). Death of a schistosome. Nature, London 278, 401–2.CrossRefGoogle ScholarPubMed
Doenhoff, M. J., Sabah, A. A., Fletcher, C., Webbe, G. & Bain, J. (1987). Evidence for an immune-dependent action of praziquantel on Schistosoma mansoni in mice. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 947–51.CrossRefGoogle ScholarPubMed
Farias, R. N., Bloj, B., Morero, R. D., Sinerez, F. & Trucco, R. E. (1975). Regulation of allosteric membrane bound enzymes through changes in lipid composition. Biochimica et Biophysica Acta 415, 231–51.CrossRefGoogle Scholar
Foley, M., MacGregor, A. N., Kusel, J. R., Garland, P. B., Downie, T. & Moore, I. (1986). The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni. Journal of Cell Biology 103, 807–18.CrossRefGoogle ScholarPubMed
Fripp, P. J., Williams, G. & Crawford, M. A. (1976). The differences between the long chain polyenoic acids of adult Schistosoma mansoni and the serum of its host. Comparative Biochemistry and Physiology 53B, 505–7.Google Scholar
Goldring, O. L., Clegg, J. A., Smithers, S. R. & Terry, R. J. (1976). Acquisition of human blood group antigens by Schistosoma mansoni. Clinical and Experimental Immunology 26, 181–7.Google ScholarPubMed
Harder, A., Goosens, J. & Andrews, P. (1988). Influence of praziquantel and Ca2+ on the bilayer-isotropic-hexagonal transition of model membranes. Molecular and Biochemical Parasitology 29, 5562.CrossRefGoogle ScholarPubMed
Harnett, W. (1988). The anthelmintic action of praziquantel. Parasitology Today 4, 144–6.CrossRefGoogle ScholarPubMed
Harnett, W. & Kusel, J. R. (1986). Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro. Parasitology 93, 401–5.CrossRefGoogle ScholarPubMed
Harris, A. R. C., Russel, R. J. & Charters, A. D. (1984). A review of schistosomiasis in immigrants in Western Australia, demonstrating the unusual longevity of Schistosoma mansoni. Transactions of the Royal Society of Topical Medicine and Hygiene 78, 385–8.CrossRefGoogle ScholarPubMed
Kemp, W. M., Merrit, S. C. & Rosier, J. G. (1977). Schistosoma mansoni: Identification of immunoglobulins associated with the tegument of adult parasites from mice. Experimental Parasitology 45, 81–7.CrossRefGoogle Scholar
Levy, M. G. & Read, C. P. (1975). Purine and pyrimidine transport in Schistosoma mansoni. Journal of Parasitology 61, 257–66.Google ScholarPubMed
Lewis, J. T., Hafeman, D. G. & McConnell, H. M. (1980). Kinetics of antibody-dependent binding of haptenated phospholipid vesicles to a macrophage-related cell line. Biochemistry 19, 5376–86.CrossRefGoogle ScholarPubMed
McLaren, D. J. (1980). The adult worm. In Schistosoma mansoni: the Parasite Surface in Relation to Host Immunity, (ed. Brown, K. N.), pp. 127. Chichester, EUA: Research Studies Press.Google Scholar
Meyer, F., Meyer, H. & Bueding, E. (1970). Lipid metabolism in the parasitic and free-living flat worms. Biochimica et Biophysica Acta 210, 256–66.Google Scholar
Moffat, D. & Kusel, J. R. (1992). Fluorescent lipid uptake and transport in adult Schistosoma mansoni. Parasitology 105, 81–9.CrossRefGoogle ScholarPubMed
Pampori, N. A. (1985). Enzymes of isolated brush border of Cotugnia digonopora and their insensitivity to anthelmintics in vitro. Veterinary Parasitology 18, 1319.CrossRefGoogle ScholarPubMed
Pearce, E. J., James, S. L., Dalton, J. P., Barral, A., Ramos, C., Strand, M. & Sher, A. (1986). Immunochemical characterization and purification of SM-97. A Schistosoma mansoni antigen mono-specifically recognized by antibodies from mice protectively immunized in a non-living vaccine. Journal of Immunology 137, 3593–600.CrossRefGoogle Scholar
Podesta, R. B. (1983). Epithelial and cellular mechanisms in osmoregulation. Journal of Experimental Biology 106, 195204.CrossRefGoogle Scholar
Ramalho-Pinto, F. J., McLaren, D. J. & Smithers, S. R. (1978). Complement-mediated killing of schistosomula of Schistosoma mansoni by rat eosinophils in vitro. Journal of Experimental Medicine 147, 147–56.CrossRefGoogle ScholarPubMed
Rimon, G., Hanski, E., Braun, S. & Levitzki, A. (1978). Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature, London 276, 394–6.CrossRefGoogle ScholarPubMed
Rumjanek, F. D. (1987). Biochemistry and physiology. In The Biology of Schistosomes – From Genes to Latrines (ed. Rollinson, D. & Simpson, A. J. G.), pp. 163183. London and New York: Academic Press.Google Scholar
Rumjanek, F. D. & McLaren, D. J. (1981). Schistosoma mansoni: modulation of schistosomular lipid composition by serum. Molecular and Biochemical Parasitology 3, 239–52.CrossRefGoogle ScholarPubMed
Rumjanek, F. D. & Simpson, A. J. G. (1980). The incorporation and utilization of radiolabelled lipids by adult Schistosoma mansoni in vitro. Molecular and Biochemical Parasitology 1, 3142.CrossRefGoogle ScholarPubMed
Samuelson, J. C., Sher, A. & Caulfield, J. P. (1980). Newly transformed schistosomula spontaneously lose their surface antigens and C3 acceptor sites during culture. Journal of Immunology 124, 2055–7.CrossRefGoogle ScholarPubMed
Sands, W. A. & Kusel, J. R. (1992). Changes in the lateral diffusion of fluorescent lipid analogues in the surface membrane of adult male Schistosoma mansoni. Molecular and Biochemical Parasitology 53, 233–40.CrossRefGoogle ScholarPubMed
Schepers, H., Brasseur, R., Goormaghtigh, E., Duquenoy, P. & Ruysschaert, J. M. (1988). Mode of insertion of praziquantel and derivatives into lipid membranes. Biochemical Pharmacology 37, 1615–23.CrossRefGoogle ScholarPubMed
Shaw, M. K. & Erasmus, D. A. (1987). Schistosoma mansoni: structural damage and tegumental repair after in vivo treatment with praziquantel. Parasitology 94, 243–54.CrossRefGoogle ScholarPubMed
Shin, M. L., Paznekas, W. A. & Mayer, M. M. (1979). Effect of membrane fluidity on efficiency of sheep erythrocyte lysis by terminal complement proteins. Federation Proceedings 38, 1468 (Abstract).Google Scholar
Shinitzky, M. (1984). Membrane fluidity and cellular functions. In Physiology of Membrane Fluidity, vol. 1. (ed. Shinitzky, M.), pp. 151. Boca Raton, Florida: CRC Press Inc.Google Scholar
Smith, T. M., Brooks, T. J. & White, H. B. Jr (1969). Fatty acid composition of adult Schistosoma mansoni. Lipids 4, 31–6.CrossRefGoogle ScholarPubMed
Torpier, G. & Capron, A. (1979). Receptor for IgG Fc and human beta-2-microglobulin on Schistosoma mansoni schistosomula. Nature, London 278, 447–9.CrossRefGoogle Scholar
Wilson, R. A. & Barnes, P. E. (1979). An in vitro investigation of dynamic processes occurring in the schistosome tegument using compounds known to disrupt secretory processes. Parasitology 68, 259–70.CrossRefGoogle Scholar
World Health Organization (1982). Report of the Scientific Working Group on the schistosome membrane. WHO Bulletin – TDR/SCH-SWG (3)/82.3.Google Scholar
Yeagle, P. L. (1989). Lipid regulation of cell membrane structure and function. FASEB Journal 3, 1833–42.CrossRefGoogle ScholarPubMed