Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:25:14.243Z Has data issue: false hasContentIssue false

The effect of sulphadiazine, proguanil and 2:4-diamino-6:7-diisopropylpteridine upon gametocyte production in Plasmodium gallinaceum (Brumpt, 1935)

Published online by Cambridge University Press:  06 April 2009

Ann Bishop
Affiliation:
The Molteno Institute, University of Cambridge

Extract

In strains of Plasmodium gallinaceum passaged by blood-inoculation, through young birds treated with small, but effective doses of proguanil, sulphadiazine or 2:4-diamino-6:7-diisopropylpteridine, the numbers of gametocytes produced were much greater than in the parent strain passaged by the same method.

The effect of the drugs upon gametocyte production appears to be a long term one, since no change in gametocyte numbers was observed in birds treated with proguanil or sulphadiazine for only a few days.

The relationship of these drugs to nuclear division and the synthesis of nucleic acids is discussed in the light of the observed increase in gametocyte-production in drug-treated strains of P. gallinaceum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babzilai-Vivaldi, G. & Kauders, O. (1924). Die Impf-Malaria – experimented durch Anophelen nicht übertragbar. Wien. klin. Wschr. 37, 1055.Google Scholar
Bishop, A. (1943). Variation in gametocyte production in a strain of Plasmodium relictum in canaries. Parasitology, 35, 82.CrossRefGoogle Scholar
Bishop, A. & Birkett, B. (1948). Drug-resistance in Plasmodium gallinaceum, and the persistence of pahidrine-resistance after mosquito transmission. Parasitology, 39, 126.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1948). Resistance to sulphadiazine and ‘paludrine’ in the malaria parasite of the fowl (P. gallinaceum). Nature, Lond., 162, 541.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1950). Sulphadiazine-resistance in Plasmodium gallinaceum and its relation to other antimalarial compounds. Parasitology, 40, 163.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1952 a). Failure to produce resistance to chloroquine in Plasmodium gallinaceum in chicks. Parasitology, 42, 52.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1952 b). Pamaquin-resistance in a strain of Plasmodium gallinaceum and its relationship to other antimalarial drugs. Parasitology, 42, 57.CrossRefGoogle Scholar
Bishop, A. & McConnachie, E. W. (1953). The development of resistance to metachloridine in Plasmodium gallinaceum in chicks. Parasitology, 42, 277.CrossRefGoogle ScholarPubMed
Black, R. H. (1946). The effect of anti-malarial drugs on Plasmodium falciparum (New Guinea strains) developing in vitro. Trans. R. Soc. Trop. Med. Hyg. 40, 163.CrossRefGoogle ScholarPubMed
Boivin, A., Vendrely, R. & Vendrely, C. (1948). L'acide désoxyribonucléque du noyau cellulaire dépositaire des caractères héréditaires; arguments d'ordre analytique. C.R. Acad. Sci., Paris, 226, 1061.Google Scholar
Brackett, S., Waletzky, E. & Baker, M. (1945). The rate of action of sulphadiazine and quinine on the malarial parasite, Plasmodium gallinaceum. J. Pharmacol. 84, 254.Google Scholar
Brumpt, E. (1935). Paludisme aviaire: Plasmodium gallinaceum n.sp. de la poule domestique. C.R. Acad. Sci., Paris, 200, 783.Google Scholar
Chang, S., Silverman, M. & Keresztesy, J. (1951). Some observations on the action of citrovorum factor in Leuconostoc citrovorum. J. Bact. 62, 753.CrossRefGoogle ScholarPubMed
Chen, T. T. (1944). The nuclei of avian malaria parasites. I. The structure of nuclei in Plasmodium elongatum with some considerations on technique. Amer. J. Hyg. 40, 26.Google Scholar
Cuboni, E. (1926). Gametenfreie Plasmodium vivax-stämme. Wien. klin. Wschr. 39, 1475.Google Scholar
Deane, H. W. (1945). Studies on malarial parasites. II. The staining of two primate parasites by the Feulgen technique. J. Cell. Comp. Physiol. 26, 139.CrossRefGoogle Scholar
Fairley, N. H. (1946). Researches on paludrine (M. 4888) in malaria. Trans. R. Soc. Trop. Med. Hyg. 40, 105.Google ScholarPubMed
Findlay, G. M., Maegraith, B. G., Markson, J. L. & Holden, J. R. (1946). Investigations in the chemotherapy of malaria hi West Africa. V. Sulphonamide compounds. Ann. Trop. Med. Parasit. 40, 358.CrossRefGoogle Scholar
Gambrell, W. E. (1937). Variation in gametocyte production in avian malaria. Amer. J. Trop. Med. 17, 689.CrossRefGoogle Scholar
Greenberg, J. (1949 a). Inhibition of the antimalarial activity of chlorguanide by pteroylglutamic acid. Proc. Soc. Exp. Biol., N.Y., 71, 306.CrossRefGoogle ScholarPubMed
Greenberg, J. (1949 b). The potentiation of the antimalarial activity of chlorguanide by p–aminobenzoic acid competitors. J. Pharmacol. 97, 238.Google ScholarPubMed
Huff, C. G. & Gambrell, E. (1934). Strains of Plasmodium cathemerium, with and without gametocytes. Amer. J. Hyg. 19, 404.Google Scholar
Huff, C. G. & Coulston, F. (1946). The relations of natural and acquired immunity of various avian hosts to the cryptozoites and metacryptozoites of Plasmodium gattinaceum and Plasmodium relictum. J. Infect. Dis. 78, 99.CrossRefGoogle Scholar
Jírovec, O. & Čzebný, W. (1932). Die Ergebnisse der Nuklealreaktion bei Vogelmalaria. Zbl. Bakt. (1. Orig.), 126, 181.Google Scholar
Lewert, R. M. (1950). Alterations in the cycle of Plasmodium gattinaceum following passage through tissue culture. II. The behaviour of the strain during multiple passage through chicks. Amer. J. Hyg. 51, 178.Google Scholar
Lewert, R. M. (1952 a). Nucleic acids in Plasmodia and the phosphorus partition of cells infected with Plasmodium gallinaceum. J. Infect. Dis. 91, 125.CrossRefGoogle ScholarPubMed
Lewert, R. M. (1952 b). Changes in nucleic acids and protein in nucleated erythrocytes infected with Plasmodium gallinaceum as shown by ultraviolet absorption measurements. J. Infect. Dis. 91, 180.CrossRefGoogle ScholarPubMed
Lüdicke, M. & Piekarski, G. (1952). Über die Gametenbildung von Plasmodium falciparum. (Welch 1897). Zbl. Bakt. (1. Orig.), 157, 522.Google Scholar
Maegraith, B. G., Adams, A. R. D., King, J. D., Townshend, R. H., Davey, T. H. & Havard, R. E. (1945). Studies on synthetic antimalarial drugs. XIV. Results of a preliminary investigation of the therapeutic action of 4888 (paludrine) on acute attacks of malignant tertian malaria. Ann. Trop. Med. Parasit. 39, 232.CrossRefGoogle Scholar
McFadzean, J. A. (1951). Morphological changes in Plasmodium cynomolgi following proguanil, sulphadiazine, and mepacrine therapy. Trans. R. Soc. Trop. Med. Hyg. 44, 707.CrossRefGoogle ScholarPubMed
Mackerras, M. J. & Ercole, Q. N. (1948). Observations on the action of paludrine on malarial parasites. Trans. R. Soc. Trop. Med. Hyg. 41, 365.CrossRefGoogle Scholar
Maier, J. & Riley, E. (1942). Inhibition of antimalarial action of sulfonamides by p–aminobenzoic acid. Proc. Soc. Exp. Biol., N.Y., 50, 152.CrossRefGoogle Scholar
Marshall, E. K., Litchfield, J. T. & White, H. J. (1942). Sulfonamide therapy of malaria in ducks. J. Pharmacol. 75, 89.Google Scholar
Mirsky, A. E. & Ris, H. (1949). Variable and constant components of chromosomes. Nature, Lond., 163, 666.CrossRefGoogle ScholarPubMed
Prusoff, W. H., Tepley, L. J. & King, C. G. (1948). The influence of pteroylglutamic acid on nucleic acid synthesis in Lactobacillus casei. J. Biol. Chem. 176, 1309.CrossRefGoogle ScholarPubMed
Ramakrishnan, S. P., Young, M. D., Jeffery, G. M., Burgess, R. W. & McLendon, S. B. (1952). The effect of single and multiple doses of paludrine upon Plasmodium falciparum. Amer. J. Hyg. 55, 239.Google ScholarPubMed
Schöpfer, W. H. (1948). Sulfamidés, acides nucléiques et purines. Bull. Soc. Chim. biol., Paris, 30, 748.Google Scholar
Shute, P. G. & Maryon, M. (1951). A study of gametocytes in a West African strain of Plasmodium gallinaceum. Trans. R. Soc. Trop. Med. 44, 421.CrossRefGoogle Scholar
Skipper, H. E., Mitchell, J. H. & Bennett, L. L. (1950). Inhibition of nucleic acid synthesis by folic acid antagonists. Cancer Res. 10, 510.Google ScholarPubMed
Thurston, J. P. (1950). Action of proguanil on P. berghei. Inhibition by p–aminobenzoic acid. Lancet, ii, 438.CrossRefGoogle Scholar
Thurston, J. P. (1951). Morphological changes in Plasmodium berghei following proguanil, sulphadiazine and mepacrine therapy. Trans. R. Soc. Trop. Med. Hyg. 44, 703.CrossRefGoogle ScholarPubMed
Thurston, J. P. (1953). The morphology of Plasmodium berghei before and after treatment with drugs. Trans. R. Soc. Trop. Med. Hyg. 47, 248.CrossRefGoogle ScholarPubMed
Vendrely, R. & Vendrely, C. (1949). Nouveaux résultats sur la teneur absolu en acide désoxyribonucléique du noyau cellulaire. Cas particulier des erythrocytes d'oiseau. C.R. Acad. Sci., Paris, 228, 1256.Google Scholar
Vendrely, R. & Vendrely, C. (1950). Sur la teneur absolue en acide désoxyribonucléique du noyau cellulaire chez quelques espèces d'oiseaux et de poissons. C.R. Acad. Sci., Paris, 230, 788.Google Scholar
Whitfeld, P. R. (1952). Nucleic acids in erythrocytic stages of a malaria parasite. Nature, Lond., 169, 751.CrossRefGoogle ScholarPubMed