Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T20:10:35.177Z Has data issue: false hasContentIssue false

Effect of Crotalus viridis viridis snake venom on the ultrastructure and intracellular survival of Trypanosoma cruzi

Published online by Cambridge University Press:  21 July 2010

CAMILA M. ADADE
Affiliation:
Laboratório de Biologia Celular e Ultraestrutura, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, bloco I, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
BRUNO LEMOS CONS
Affiliation:
Laboratório de Farmacologia das Toxinas e Substâncias Antagonistas, Centro de Ciências da Saúde, bloco J, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
PAULO A. MELO
Affiliation:
Laboratório de Farmacologia das Toxinas e Substâncias Antagonistas, Centro de Ciências da Saúde, bloco J, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
THAÏS SOUTO-PADRÓN*
Affiliation:
Laboratório de Biologia Celular e Ultraestrutura, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, bloco I, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
*
*Corresponding author: Laboratório de Biologia Celular e Ultraestrutura, Instituto de Microbiologia Prof. Paulo de Góes, CCS, Bloco I, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Tel: +55 21 2562 6738. Fax: +5521 2560 8344. E-mail: [email protected]

Summary

Chagas' disease, caused by Trypanosoma cruzi, affects 16–18 million people in Central and South America. Patient treatment is based on drugs that have toxic effects and limited efficacy. Therefore, new chemotherapeutic agents need to be developed. Snake venoms are sources of natural compounds used in various medical treatments. We observed that Crotalus viridis viridis venom was effective against all developmental forms of T. cruzi. Ultrastructural analysis revealed swelling of mitochondria, blebbing and disruption of the plasma membrane, loss of cytoplasm components and morphological changes of the cell. Staining with propidium iodide and rhodamine 123 confirmed the observed alterations in the plasma and mitochondrial membranes, respectively. The effects of the venom on the parasite intracellular cycle were also analysed. Pre-infected LLC-MK2 cells incubated with Cvv venom showed a 76–93% reduction in the number of parasites per infected cell and a 94–97·4% reduction in the number of parasites per 100 cells after 96 h of infection. Free trypomastigotes harvested from the supernatants of Cvv venom-treated cells were incapable of initiating a new infection cycle. Our data demonstrate that Cvv venom can access the host cell cytoplasm at concentrations that cause toxicity only to the amastigote forms of T. cruzi, and yields altered parasites with limited infective capacity, suggesting the potential use of Cvv venom in Chagas' disease chemotherapy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araya, C. and Lomonte, B. (2007). Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biology International 31, 263268. doi: 10.1016/j.cellbi.2006.11.007.CrossRefGoogle ScholarPubMed
Bisaggio, D. F., Adade, C. M. and Souto-Padrón, T. (2008). In vitro effects of suramin on Trypanosoma cruzi. International Journal of Antimicrobial Agents 31, 282286. doi: 10.1016/j.ijantimicag.2007.11.001.CrossRefGoogle ScholarPubMed
Bisaggio, D. F. R., Campanati, L., Pinto, R. C. V. and Souto-Padrón, T. (2006). Effect of suramin on trypomastigote forms of Trypanosoma cruzi: Changes on cell motility and on the ultrastructure of the flagellum-cell body attachment region. Acta Tropica 98, 162175. doi: 10.1016/j.actatropica.2006.04.003.CrossRefGoogle ScholarPubMed
Camargo, E. P. (1964). Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de São Paulo 6, 93100.Google ScholarPubMed
Ciscotto, P., Machado de Avila, R. A., Coelho, E. A. F., Oliveira, J., Diniz, C. G., Farías, L. M., Carvalho, M. A. R., Maria, W. S., Sanchez, E. F., Borges, A. and Chávez-Olórtegui, C. (2009). Antigenic, microbicidal and antiparasitic properties of an L -amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 53, 330341. doi: 10.1016/j.toxicon.2008.12.004.CrossRefGoogle Scholar
Corrêa, M. C. C. Jr., Maria, D. A., Moura-da-Silva, A. M., Pizzocaro, K. F. and Ruiz, I. R. G. (2002). Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin. Toxicon 40, 739748. doi: 10.1016/S0041-0101(01)00275-6.CrossRefGoogle ScholarPubMed
Coura, J. R. and De Castro, S. L. (2002). A critical review on Chagas' disease chemotherapy. Memórias do Instituto Oswaldo Cruz 97, 324. doi: 10.1590/S0074-02762002000100001.CrossRefGoogle Scholar
Deolindo, P., Teixeira-Ferreira, A. S., Melo, E. J. T., Arnholdt, A. C. V., De Souza, W., Alves, E. W. and DaMatta, R. A. (2005). Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. Memórias do Instituto Oswaldo Cruz 100, 3338. doi: 10.1590/S0074-02762005000100006.CrossRefGoogle ScholarPubMed
El-Rafael, M. F. and Sarkar, N. H. (2009). Snake venom inhibits the growth of mouse mammary tumor cells in vitro and in vivo. Toxicon 54, 3341. doi: 10.1016/j.toxicon.2009.03.017.CrossRefGoogle Scholar
Fernandez-Gomez, R., Zerrouk, H., Sebti, F., Loyens, M., Benslimane, A. and Ouaissi, M. A. (1994). Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms: Preliminary identification of proteins from Cerastes cerastes venom which interacts with the parasites. Toxicon 32, 875882. doi: 10.1016/0041-0101(94)90366-2.CrossRefGoogle ScholarPubMed
Fernandez, J. H., Neshich, G. and Camargo, A. C. (2004). Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genetics and Molecular Research 3, 554563.Google ScholarPubMed
Gonçalves, A. R., Soares, M. J., De Souza, W., DaMatta, R. A. and Alves, E. W. (2002). Ultrastructural alterations and growth inhibition of Trypanosoma cruzi and Leishmania major induced by Bothrops jararaca venom. Parasitology Research 88, 598602. doi: 10.1007/s00436-002-0626-3.Google ScholarPubMed
Gutiérrez, J. M. and Ownby, C. L. (2003). Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon 42, 915931. doi: 10.1016/j.toxicon.2003.11.005.CrossRefGoogle ScholarPubMed
Harris, J. B. and Cullen, M. J. (1990). Muscle necrosis caused by snake venoms and toxins. Electron Microscopy Reviews 3, 183211.CrossRefGoogle ScholarPubMed
Koh, D. C. I., Armugam, A. and Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences 63, 30303041. doi: 10.1007/s00018-006-6315-0.CrossRefGoogle ScholarPubMed
Marinetti, G. V. (1965). The action of phospholipase A on lipoproteins. Biochimica et Biophysica Acta 98, 554565. doi: 10.1016/0005-2760(65)90152-9.CrossRefGoogle ScholarPubMed
Melo, P. A. and Ownby, C. L. (1999). Ability of wedelolactone, heparin, and para-bromophenacyl bromide to antagonize the myotoxic effects of two crotaline venoms and their PLA2 myotoxins. Toxicon 37, 199215. doi: 10.1016/S0041-0101(98)00183-4.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F. S., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and De Castro, S. L. (2009). Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron 40, 157168. doi: 10.1016/j.micron.2008.08.003.CrossRefGoogle ScholarPubMed
Moncayo, A. and Silveira, A. C. (2009). Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Memórias do Instituto Oswaldo Cruz 104, 1730. doi: 10.1590/S0074-02762009000900005.CrossRefGoogle ScholarPubMed
Newman, R. A., Vidal, J. C., Viskatis, L. J., Johnson, J. and Etcheverry, M. A. (1993). VRCTC-310-1 novel compound of purified animal toxins separated anti-tumor efficacy from neurotoxicity. Investigational New Drugs 11, 151159.CrossRefGoogle Scholar
Ownby, C. L., Colberg, T. R. and White, S. P. (1997). Isolation, characterization and crystallization of a phospholipase A2 myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis). Toxicon 35, 111124. doi: 10.1016/S0041-0101(96)00054-2.CrossRefGoogle ScholarPubMed
Pai, L. H., Wittes, R., Setser, A., Willingham, M. C. and Pastan, I. (1996). Treatment of advanced solid tumors with immunotoxin LMB-1: on antibody linked to pseudomonas exotoxin. Nature Medicine 2, 350353.CrossRefGoogle ScholarPubMed
Papo, N. and Shai, Y. (2003). New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42, 93469354. doi: 10.1021/bi027212o.CrossRefGoogle Scholar
Papo, N., Shahar, M., Eisenbach, L. and Shai, Y. (2003). A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. The Journal of Biological Chemistry 278, 21018210123. doi: 10.1074/jbc.M211204200.CrossRefGoogle ScholarPubMed
Papo, N., Braunstein, A., Eshhar, Z. and Shai, Y. (2004). Suppression of human prostate tumor growth in mice by a cytolytic D-, L- amino acid peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Research 64, 57795786.CrossRefGoogle Scholar
Passero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D. and Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research 101, 13651371. doi: 10.1007/s00436-007-0653-1.CrossRefGoogle ScholarPubMed
Tempone, A. G., Andrade, H. F., Spencer, P. J., Lourenço, C. O., Rogero, J. R. and Nascimento, N. (2001). Bothrops moojeni venom kills Leishmania spp. with hydrogen peroxide generated by its L-amino acid oxidase. Biochemical and Biophysical Research Communications 280, 620624. doi: 10.1006/bbrc.2000.4175.CrossRefGoogle ScholarPubMed
Tempone, A. G., Sartorelli, P., Mady, C. and Fernandes, F. (2007). Natural products to anti-trypanosomal drugs: an overview of new drug prototypes for American Trypanosomiasis. Cardiovascular & Hematological Agents in Medicinal Chemistry 5, 222235.CrossRefGoogle ScholarPubMed
Toyama, M. H., Toyama, D. de O., Passero, L. F., Laurenti, M. D., Corbett, C. E., Tomokane, T. Y., Fonseca, F. V., Antunes, E., Joazeiro, P. P., Beriam, L. O., Martins, M. A., Monteiro, H. S. and Fonteles, M. C. (2006). Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 47, 4757. doi: 10.1016/j.toxicon.2005.09.008.CrossRefGoogle ScholarPubMed
Tsai, I.-H., Wang, Y.-M., Chen, Y.-H. and Tu, A. T. (2003). Geographic variations, cloning, and functional analyzes of the venom acidic phospholipases A2 of Crotalus viridis viridis. Archives of Biochemistry and Biophysics 411, 289296. doi: 10.1016/S0003-9861(02)00747-6.CrossRefGoogle Scholar
Tu, A. T. (1996). Overview of snake venom chemistry. In Natural Toxins II (ed. Singh, , Tu, B. R., , A. T.), pp, 3763. Plenum Press, New York, USA.CrossRefGoogle Scholar
Urbina, J. A. and Docampo, R. (2003). Specific chemotherapy of Chagas disease: controversies and advances. Trends in Parasitology 19, 495501. doi: 10.1016/j.pt.2003.09.001.CrossRefGoogle ScholarPubMed
Zhang, Y. J., Wang, J. H., Lee, W. H., Wang, Q., Liu, H., Zheng, Y. T. and Zhang, Y. (2003). Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity. Biochemical and Biophysical Research Communications 309, 598604. doi: 10.1016/j.bbrc.2003.08.044.CrossRefGoogle ScholarPubMed
Zhou, Q., Sherwin, R. P., Parrish, C., Richters, V., Groshen, S. G., Tsao-Wei, D. and Markland, F. S. (2000). Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Research 61, 249260. doi: 10.1023/A:1006457903545.CrossRefGoogle ScholarPubMed
Zieler, H., Keister, D. B., Dvorak, J. A. and Ribeiro, M. C. (2001). A snake venom phospholipase A2 blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. The Journal of Experimental Biology 204, 41574167.CrossRefGoogle ScholarPubMed