Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T12:00:42.319Z Has data issue: false hasContentIssue false

Discrimination of the notifiable pathogen Gyrodactylus salaris from G. thymalli (Monogenea) using statistical classifiers applied to morphometric data

Published online by Cambridge University Press:  16 October 2000

E. S. McHUGH
Affiliation:
Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
A. P. SHINN
Affiliation:
Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
J. W. KAY
Affiliation:
Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland, UK

Abstract

The identification and discrimination of 2 closely related and morphologically similar species of Gyrodactylus, G. salaris and G. thymalli, were assessed using the statistical classification methodologies Linear Discriminant Analysis (LDA) and k-Nearest Neighbours (KNN). These statistical methods were applied to morphometric measurements made on the gyrodactylid attachment hooks. The mean estimated classification percentages of correctly identifying each species were 98·1% (LDA) and 97·9% (KNN) for G. salaris and 99·9% (LDA) and 73·2% (KNN) for G. thymalli. The analysis was expanded to include another 2 closely related species and the new classification efficiencies were 94·6% (LDA) and 98·0% (KNN) for G. salaris; 98·2% (LDA) and 72·6% (KNN) for G. thymalli; 86·7% (LDA) and 91·8% (KNN) for G. derjavini; and 76·5% (LDA) and 77·7% (KNN) for G. truttae. The higher correct classification scores of G. salaris and G. thymalli by the LDA classifier in the 2-species analysis over the 4-species analysis suggested the development of a 2-stage classifier. The mean estimated correct classification scores were 99·97% (LDA) and 99·99% (KNN) for the G. salarisG. thymalli pairing and 99·4% (LDA) and 99·92% (KNN) for the G. derjaviniG. truttae pairing. Assessment of the 2-stage classifier using only marginal hook data was very good with classification efficiencies of 100% (LDA) and 99·6% (KNN) for the G. salarisG. thymalli pairing and 97·2% (LDA) and 99·2% (KNN) for the G. derjaviniG. truttae pairing. Paired species were then discriminated individually in the second stage of the classifier using data from the full set of hooks. These analyses demonstrate that using the methods of LDA and KNN statistical classification, the discrimination of closely related and pathogenic species of Gyrodactylus may be achieved using data derived from light microscope studies.

Type
Research Article
Copyright
2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)