Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:38:55.742Z Has data issue: false hasContentIssue false

Differential prevalence and diversity of haemosporidian parasites in two sympatric closely related non-migratory passerines

Published online by Cambridge University Press:  13 May 2016

ANNA DUBIEC*
Affiliation:
Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
EDYTA PODMOKŁA
Affiliation:
Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
MAGDALENA ZAGALSKA-NEUBAUER
Affiliation:
Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680 Gdańsk, Poland
SZYMON M. DROBNIAK
Affiliation:
Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
ANETA ARCT
Affiliation:
Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
LARS GUSTAFSSON
Affiliation:
Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala, Sweden
MARIUSZ CICHOŃ
Affiliation:
Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
*
*Corresponding author: Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland. Tel.: 0048 22 629 32 21. Fax: 0048 22 629 63 02. E-mail: [email protected]

Summary

Haemosporidian parasites infecting birds show distinct heterogeneity in their distribution among host species. However, despite numerous studies on the prevalence and diversity of parasite communities across species, very little is known on patterns of differences between them. Such data is lacking because up to date the majority of studies explored the patterns of variation in infections in different years, different time of sampling within a year or a breeding cycle, different study sites or was based on a small sample size, all of which may affect the estimates of prevalence and parasite diversity. Here, the prevalence, richness and diversity of haemosporidian parasites from the genera Plasmodium and Haemoproteus were studied in two closely related non-migratory hole-nesting passerines: Great Tits and Blue Tits. Birds were sampled in sympatrically breeding populations during two seasons at the same stage of their breeding cycle – late nestling care. Great Tits were more prevalently infected with Plasmodium and Haemoproteus parasites (97·1 vs 71·2%), harboured a higher proportion of multiple infections (26·2 vs 3·2%) and had a more diverse parasite community (11 vs 5 parasite lineages) than Blue Tits. Observed differences between two host species are discussed with reference to their breeding densities and immunological and behavioural characteristics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, S. A., Bernier, U. R. and Kline, D. L. (2006). Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. Journal of Medical Entomology 43, 225231.CrossRefGoogle ScholarPubMed
Andrade, B. B., Texeira, C. R., Barral, A. and Barral-Netto, M. (2005). Haematophagous arthropod saliva and host defense system: a tale of tear and blood. Anais da Academia Brasileira de Ciências 77, 665693.Google Scholar
Antonovics, J., Iwasa, Y. and Hassell, M. P. (1995). A generalized model of parasitoid, veneral and vector-based transmission processes. American Naturalist 145, 661675.Google Scholar
Arriero, E. and Møller, A. P. (2008). Host ecology and life-history traits associated with blood parasite species richness in birds. Journal of Evolutionary Biology 21, 15041513.Google Scholar
Atkinson, C. T. and Van Riper, C. III. (1991). Pathogenecity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus . In Bird-parasite Interactions (ed. Loye, J. E. and Zuk, M.), pp. 1948. Oxford University Press, Oxford, UK.Google Scholar
Beadell, J. S., Gering, E., Austin, J., Dumbacher, J. P., Peirce, M. A., Pratt, T. K., Atkinson, C. T. and Fleischer, R. C. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13, 38293844.Google Scholar
Bensch, S., Waldenström, J., Jonzén, N., Westerdahl, H., Hansson, B., Sejberg, D. and Hasselquist, D. (2007). Temporal dynamics and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology 76, 112122.Google Scholar
Bensch, S., Hellgren, O. and Pérez-Tris, J. (2009). MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources 9, 13531358.CrossRefGoogle ScholarPubMed
Bernotienė, R., Palinauskas, V., Iezhova, T., Murauskaitė, D. and Valkiūnas, G. (2016). Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Experimental Parasitology 163, 3137.Google Scholar
Butler, D. (2009). asreml: asreml() fits the linear mixed model. R package version 3.0. http://www.vsni.co.uk Google Scholar
Clayton, D. H. and Moore, J. (1997). Host-Parasite Evolution. General Pricinples and Avian Models. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates Google Scholar
Cosgrove, C. L., Wood, M. J., Day, K. P. and Sheldon, B. C. (2008). Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus . Journal of Animal Ecology 77, 540548.Google Scholar
Cramp, S. (ed). (1985). Handbook of the Birds of Europe, the Middle East and North Africa: the Birds of the Western Palearctic, Vol. VIII. Oxford University Press, Oxford, UK.Google Scholar
Davies, T. J. and Pedersen, A. B. (2008). Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proceedings of the Royal Society of London B 275, 16951701.Google Scholar
Dubiec, A., Góźdź, I. and Mazgajski, T. D. (2013). Green plant material in avian nests. Avian Biology Research 6, 133146.Google Scholar
Ferrer, E. S., García-Navas, V., Sanz, J. J. and Ortego, J. (2012). Molecular characterization of avian malaria parasites in three Mediterranean blue tit (Cyanistes caeruleus) populations. Parasitology Research 111, 21372142.CrossRefGoogle ScholarPubMed
Garvin, M. C. and Greiner, E. C. (2003). Epizootiology of Haemoproteus danilewskyi (Haemosporina: Haemoproteidae) in blue jays (Cyanocitta cristata) in Southcentral Florida. Journal of Wildlife Diseases 39, 19.CrossRefGoogle Scholar
Hall, T. (1999). BioEdit. Biological Sequence Alignment Editor for Windows. North Carolina State University, NC, USA, http://www.mbio.ncsu.edu/BioEdit/bioedit.html Google Scholar
Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science 218, 384387.Google Scholar
Hoshen, M. and Morse, A. (2004). A weather-driven model of malaria transmission. Malaria Journal 3, 3246.Google Scholar
Isaksson, C., Sepil, I., Baramidze, V. and Sheldon, B. C. (2013). Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecology 13, 15.Google Scholar
Jenkins, T. and Owens, I. P. F. (2011). Biogeography of avian blood parasites (Leucocytozoon spp.) in two resident hosts across Europe: phylogeographic structuring or the abundance-occupancy relationship? Molecular Ecology 20, 39103920.Google Scholar
Jovani, R. and Tella, J. L. (2006). Parasite prevalence and sample size: misconceptions and solutions. Trends in Parasitology 22, 214218.Google Scholar
Knowles, S. C. L., Nakagawa, S. and Sheldon, B. C. (2009). Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Functional Ecology 23, 405415.Google Scholar
Krams, I., Suraka, V., Rattiste, K., Āboliņš-Ābols, M., Krama, T., Rantala, M. J., Mierauskas, P., Cīrule, D. and Saks, L. (2012). Comparative analysis reveals a possible immunity-related absence of blood parasites in Common Gulls (Larus canus) and Black-headed Gulls (Chroicocephalus ridibundus). Journal of Ornithology 153, 12451252.CrossRefGoogle Scholar
Krams, I. A., Suraka, V., Rantala, M. J., Sepp, T., Mierauskas, P., Vrublevska, J. and Krama, T. (2013). Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds. Journal of Zoology 291, 3441.Google Scholar
Kulma, K., Low, M., Bensch, S. and Qvarnström, A. (2013). Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone. Molecular Ecology 22, 45914601.Google Scholar
Kulma, K., Low, M., Bensch, S. and Qvarnström, A. (2014). Malaria-infected female collared flycatchers (Ficedula albicollis) do not pay the cost of late breeding. PLoS ONE 9, e85822.Google Scholar
Lachish, S., Knowles, S. C. L., Alves, R., Sepil, I., Davies, A., Lee, S., Wood, M. J. and Sheldon, B. C. (2012). Spatial determinants of infection risk in a multi-species avian malaria system. Ecography 35, 112.Google Scholar
Lafuma, L., Lambrechts, M. M. and Raymond, M. (2001). Aromatic plants in bird nests as a protection against bloodsucking flying insects? Behavioural Processes 56, 113120.Google Scholar
Lee, K. A., Martin, L. B. II, Hasselquist, D., Ricklefs, R. E. and Wikelski, M. (2006). Contrasting adaptive immune defenses and blood parasite prevalence in closely related Passer sparrows. Oecologia 150, 383392.Google Scholar
Martínez-de la Puente, J., Merino, S., Lobato, E., Rivero-de Aguilar, J., del Cerro, S., Ruiz-de-Castañeda, R. and Moreno, J. (2009). Does weather affect biting fly abundance in avian nests? Journal of Avian Biology 40, 653657.CrossRefGoogle Scholar
Marzal, A., de Lope, F., Navarro, C. and Møller, A. P. (2005). Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142, 541545.Google Scholar
Marzal, A., Balbontín, J., Reviriego, M., García-Longoria, L., Relinque, C., Hermosell, I. G., Magallanes, S., López-Calderón, C., de Lope, F. and Møller, A. P. (2016). A longitudinal study of age-related changes in Haemoproteus infection in a passerine bird. Oikos, in press. doi: 10.1111/oik.02778.CrossRefGoogle Scholar
Ortego, J. and Cordero, P. J. (2010). Factors associated with the geographic distribution of leucocytozoa parasitizing nestling eagle owls (Bubo bubo): a local spatial-scale analysis. Conservation Genetics 11, 14791487.Google Scholar
Pagenkopp, K. M., Klicka, J., Durrant, K. L., Garvin, J. C. and Fleischer, R. C. (2008). Geographic variation in malarial parasite lineages in the common yellowthroat (Geothlypis trichas). Conservation Genetics 9, 15771588.CrossRefGoogle Scholar
Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J. and Lambrechts, M. M. (2002). Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters 5, 585589.Google Scholar
Podmokła, E., Dubiec, A., Drobniak, S. M., Arct, A., Gustafsson, L. and Cichoń, M. (2014 a). Avian malaria is associated with increased reproductive investment in the blue tit. Journal of Avian Biology 45, 219224.Google Scholar
Podmokła, E., Dubiec, A., Drobniak, S. M., Arct, A., Gustafsson, L. and Cichoń, M. (2014 b). Determinants of prevalence and intensity of infection with malaria parasites in the Blue Tit. Journal of Ornithology 155, 721727.CrossRefGoogle Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ.Google Scholar
Pérez-Tris, J. and Bensch, S. (2005). Diagnosing genetically diverse avian malarial infections using mixed-sequence analysis and TA-cloning. Parasitology 131, 1523.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. and Fallon, S. M. (2002). Diversification and host switching in avian malaria parasites. Proceedings of the Royal Society of London B 269, 885892.CrossRefGoogle ScholarPubMed
Russell, C. B. and Hunter, F. F. (2005). Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial gland odors at two elevations in the Niagara region of Ontario. Journal of Medical Entomology 42, 301305.Google Scholar
Scheuerlein, A. and Ricklefs, R. E. (2004). Prevalence of blood parasites in European passeriform birds. Proceedings of the Royal Society of London B 271, 13631370.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. (2011). Evolutionary Parasitology. Oxford University Press, Oxford, UK.Google Scholar
Scordato, E. S. C. and Kardish, M. R. (2014). Prevalence and beta diversity in avian malaria communities: host species is a better predictor than geography. Journal of Animal Ecology 83, 13871397.Google Scholar
Shannon, C. E. and Weaver, W. (1962). The Mathematical Theory of Information. University of Illinois Press, Urbana.Google Scholar
Shurulinkov, P. and Chakarov, N. (2006). Prevalence of blood parasites in different local populations of reed warbler (Acrocephalus scirpaceus) and great reed warbler (Acrocephalus arundinaceus). Parasitology Research 99, 588592.Google Scholar
Stjernman, M., Råberg, L. and Nilsson, J.-Å. (2008). Maximum host survival at intermediate parasite infection intensities. PLoS ONE 3, e2463.CrossRefGoogle ScholarPubMed
Svensson, L. (1992). Identification Guide to European Passerines, 4th Edn. BTO, Stockholm, Sweden.Google Scholar
Svoboda, A., Marthinsen, G., Turčoková, L., Lifjeld, J. T. and Johnsen, A. (2009). Identification of blood parasites in old world warbler species from the Danube River Delta. Avian Diseases 53, 634636.Google Scholar
Szöllősi, E., Cichoń, M., Eens, M., Hasselquist, D., Kempenaers, B., Merino, S., Nilsson, J.-Å., Rosivall, B., Rytkönen, S., Török, J., Wood, M. J. and Garamszegi, L. Z. (2011). Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. Journal of Evolutionary Biology 24, 20142024.Google Scholar
Taylor-Robinson, A. W. (1995). Regulation of immunity to malaria – valuable lessons learned from murine models. Parasitology Today 11, 334342.Google Scholar
Tomás, G., Merino, S., Martínez-de la Puente, J., Moreno, J., Morales, J., Lobato, E., Rivero-de Aguilar, J. and del Cerro, S. (2012). Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behavioural Process 90, 246253.Google Scholar
Valkiūnas, G. (2005). Avian Malaria Parasites and Other Haemosporidia. CRC Press, Boca Raton, FL.Google Scholar
Valkiūnas, G., Bensch, S., Iezhova, T. A., Križanauskienė, A., Hellgren, O. and Bolshakov, C. V. (2006). Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. Journal of Parasitology 92, 418422.Google Scholar
Valkiūnas, G., Iezhova, T. A., Loiseau, C. and Sehgal, R. N. M. (2009). Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. Journal of Parasitology 95, 15121515.Google Scholar
Van Rooyen, J., Lalubin, F., Glaizot, O. and Christe, P. (2013). Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasites & Vectors 6, 139.Google Scholar
Waldenström, J., Bensch, S., Hasselquist, D. and Östman, Ö. (2004). A new nested PCR method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology 90, 191194.Google Scholar
Walsh, P. S., Metzger, D. A. and Higuchi, R. (1991). Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506513.Google Scholar
Wiersch, S. C., Lubjuhn, T., Maier, W. A. and Kampen, H. (2007). Haemosporidian infection in passerine birds from Lower Saxony. Journal of Ornithology 148, 1724.Google Scholar
Wood, M. J., Cosgrove, C. L., Wilkin, T. A., Knowles, S. C. L., Day, K. P. and Sheldon, B. C. (2007). Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus . Molecular Ecology 16, 32633273.Google Scholar
Yohannes, E., Križanauskienė, A., Valcu, M., Bensch, S. and Kempenaers, B. (2009). Prevalence of malaria and related haemosporidian parasites in two shorebird species with different winter habitat distribution. Journal of Ornithology 150, 287291.Google Scholar
Zamora-Vilchis, I., Williams, S. E. and Johnson, C. N. (2012). Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate. PLoS ONE 7, e39208.Google Scholar
Zylberberg, M., Derryberry, E. P., Breuner, C. W., MacDougall-Shackleton, E. A., Cornelius, J. M. and Hahn, T. P. (2015). Haemoproteus infected birds have increased lifetime reproductive success. Parasitology 142, 10331043.Google Scholar