Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:28:31.005Z Has data issue: false hasContentIssue false

Development of Plasmodium berghei ookinetes in the midgut of Anopheles atroparvus mosquitoes and in vitro

Published online by Cambridge University Press:  06 April 2009

C. J. Janse
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80.172, 3508 TD Utrecht, The Netherlands
R. J. Rouwenhorst
Affiliation:
Laboratory of Parasitology (Medical Faculty), State University of Leiden, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands
P. F. J. Van Der Klooster
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80.172, 3508 TD Utrecht, The Netherlands
H. J. Van Der Kaay
Affiliation:
Laboratory of Parasitology (Medical Faculty), State University of Leiden, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands
J. P. Overdulve
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80.172, 3508 TD Utrecht, The Netherlands

Extract

Plasmodium berghei ookinete formation in vitro and within the midgut of susceptible Anopheles atroparvus were compared. No significant morphological differences were seen, except that in vitro development was more synchronized and less degenerating forms occurred. In vitro ookinete yields were 4–31 times higher and less variable than those in vivo. Mosquitoes of a susceptible and of a refractory line of A. atroparvus were simultaneously fed on the same host or via a membrane with the same suspension of in vitro-formed mature ookinetes. Up to 100% of mosquitoes of the susceptible line produced oocysts, mostly in high numbers, whereas infection rates and numbers of oocysts produced in mosquitoes of the refractory line were lower and much more so after host feeding than after membrane feeding of mature ookinetes, indicating that refractoriness does not depend on a single process of inhibition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carter, R., Gwadz, R. W. & Green, F. (1979). Plasmodium gallinaceum: transmission blocking immunity in chickens. II. The effect of antigamete antibodies in vitro and in vivo and their elaboration during infection. Experimental Parasitology 47, 194208.CrossRefGoogle ScholarPubMed
Eyles, D. E. (1951). Studies on Plasmodium gallinaceum. II. Factors in the blood of the vertebrate host influencing mosquito infection. American Journal of Hygiene 55, 276–90.Google Scholar
Eyles, D. E. (1952). Studies on Plasmodium gallinaceum. III. Factors associated with the malaria infections in the vertebrate host influencing the degree of infection in the mosquito. American Journal of Hygiene 55, 386–91.Google ScholarPubMed
Garnham, P. C. C., Bird, R. G., Baker, J. R., Desser, S. S. & El-Nahal, H. M. S. (1969). Electron microscope studies on motile stages of malaria parasites. VI. The ookinete of Plasmodium berghei yoelii and its transformation into the early oocyst. Transactions of the Royal Society of Tropical Medicine and Hygiene 63, 187–94.CrossRefGoogle ScholarPubMed
Gass, R. F. & Yeates, R. A. (1979). In vitro damage of cultured ookinetes of Plasmodium gallinaceum by digestive proteinases from susceptible Aedes aegypti. Acta Tropica 36, 243–53.Google ScholarPubMed
Ifediba, T., Weiss, M. M. & Vanderbero, J. P. (1982). Infectivity of in vitro formed Plasmodium berghei ookinetes to mosquitoes. Journal of Parasitology 68, 333–5.CrossRefGoogle ScholarPubMed
Janse, C. J., Mons, B., Rouwenhorst, R. J., Van Der Klooster, P. F. J., Overdulve, J. P. & Van Der Kaay, H. J. (1985). In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology 91, 1929.CrossRefGoogle ScholarPubMed
Landau, I., Miltgen, F., Boulahd, Y., Chabaud, A. G. & Baccam, D. (1979). Etudes sur les gamétocytes des Plasmodium du groupe vivax: morphologic, évolution prise par les Anophelès et infectivité des microgamétocytes de Plasmodium yoelii (1). Annales de Parasitologie 54, 145–61.Google Scholar
Mendis, K. H. & Targett, G. A. T. (1979). Immunization against gametes and asexual erythrocytic stages of a rodent malaria parasite. Nature, London 277, 389–91.CrossRefGoogle ScholarPubMed
Rosenberg, R. & koontz, L. C. (1984). Plasmodium gallinaceum: density dependent limits on infectivity to Aedes aegypti. Experimental Parasitology 57, 234–8.CrossRefGoogle ScholarPubMed
Speer, C. A., Rosales-Ronquillo, M. C. & Silverman, P. H. (1975). Motility of Plasmodium berghei ookinetes in vitro. Journal of Invertebrate Pathology 25, 73–8.CrossRefGoogle ScholarPubMed
Vanderberg, J. P. C. & Gwadz, R. W. (1980). The transmission by mosquitoes of Plasmodia in the laboratory. In Malaria, vol. 2 (ed. Kreier, J. P.), pp. 154234. New York: Academic Press.Google Scholar
Vanderberg, J. P., Weiss, M. M. & Mack, S. R. (1977). In vitro cultivation of the sporogonic stages of Plasmodium: a review. Bulletin of the World Health Organization 55, 377–92.Google ScholarPubMed
Van Der Kaay, H. J. & Boorsma, L. (1977). A susceptible and refractive strain of Anopheles atroparvus to infection with Plasmodium berghei. Acta Leidensia 45, 1319.Google ScholarPubMed