Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T00:25:13.041Z Has data issue: false hasContentIssue false

The development of Echinococcus granulosus larvae in laboratory animals

Published online by Cambridge University Press:  06 April 2009

D. D. Heath
Affiliation:
Department of Zoology, The Australian National University, Canberra, Australia2600

Summary

Rabbits and mice, but not sheep, guinea-pigs or rats, were suitable hosts for secondary echinococcosis using protoscoleces obtained from Australian sheep. The host specificity is tentatively related to the phylogenetic relationship between the donor host and receptor host.

The development rate of hydatid cysts in mice is described in terms of increase in fresh weight, dry weight, and maximum cyst diameter. Fertile cysts were found after 8 months when the water content of the cysts had increased to more than 95 %. The diameter of fertile cysts up to 14 months ranged from 6 to 30 mm. By 14 months, the average fresh weight of cysts was greater than the body weight of the mice.

This work was carried out during the tenure of an Australian Wool Board Senior Postgraduate Scholarship, and forms part of a thesis to be presented for the degree of Doctor of Philosophy of the Australian National University.

I wish to thank my supervisor, Professor J. D. Smyth, for guidance and criticism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batham, E. J. (1957). Notes on viability of hydatid cysts and eggs. New Zealand Veterinary Journal 5, 74–6.CrossRefGoogle Scholar
Chordi, A. & Kagan, I. G. (1965). Identification and characterisation of antigenic components of sheep hydatid fluid by imrnunoelectrophoresis. Journal of Parasitology. U.S.A. 51, 6371.Google Scholar
Coutelen, F. (1936). Migration active et élective des scolex échinococciques dans le foie de la souris blanche au cours de certaines échinococcoses secondaires expérimentales. Compte Rendu des Séances de la Société de Biologie 121, 730–2.Google Scholar
Dévé, F. (1933). L'échinococcose secondaire expérimentale de la souris blanche. Compte Rendu des Séances de la Société de Biologie 114, 455–6.Google Scholar
Dévé, F. (1935). Réceptivité de la souris opposée à la resistance du lapin à l'inoculation de sable échinococcique du cheval. Compte Rendu des Séances de la Société de Biologie 119, 351–2.Google Scholar
Dévé, F. (1946). L'échinococcose secondaire. Paris: Masson et Cie. 241 pp.Google Scholar
Dévé, F. (1949). L'échinococcose primitive (Maladie hydatique). Paris: Masson et Cie. 362 pp.Google Scholar
Dew, H. R. (1922). Observations on the mode of development of brood capsules and scoleces in the encysted stage of Taenia echinococcus. The Medical Journal of Australia 19th year 2, 381–4.CrossRefGoogle Scholar
de Waele, A. & de Cooman, E. (1938). Étude experimentale de L'échinococcose secondaire. Annales de Parasitologie Humaine et Comparée. France 16, 121–32.Google Scholar
Ford, W. L., Gowans, J. L. & McCullagh, P. J. (1966). ‘The origin and function of lymphocytes’, Ciba Foundation Symposium, ‘The Thymus: Experimental and Clinical Studies’. p. 58. Ed. Wolstenholme, G. E. W. and Porter, R.. London: J and A. Churchill Ltd.CrossRefGoogle Scholar
Gemmell, M. A. (1966). Immunological responses of the mammalian host against tapeworm infections. IV. Species specificity of the hexacanth embryos in protecting sheep against Echinococcus granulosus. Immunology 11, 325–35.Google ScholarPubMed
Hutchison, W. M. (1958). Studies on Hydatigera taeniaeformis. I. Growth of the larval stage. Journal of Parasitology U.S.A. 44, 574–82.CrossRefGoogle ScholarPubMed
Kagan, I. G. & Agosin, M. (1968). Echinococcus antigens. Bulletin of the World Health Organisation 39, 1324.Google ScholarPubMed
Lafferty, K. J. & Jones, M. A. S. (1969). Reactions of the Graft versus Host (GVH) type. The Australian Journal of Experimental Biology and Medical Science 47, 1754.CrossRefGoogle ScholarPubMed
Lubinsky, G. (1960 a). The maintenance of Echinococcus multilocularis sibiricensis without the definitive host. Canadian Journal of Zoology 38, 149–51.Google Scholar
Lubinsky, G. (1960 b). A vegetatively propagated strain of larval Echinococcus multilocularis. Canadian Journal of Zoology 38, 1117–25.Google Scholar
Lukashenko, N. P. (1960). [A laboratory model of alveolar echinococcosis.] Meditsinskaya Parazitologia i Parazitarnie Bolezni. U.S.S.R. 2, 154–7. (In Russian.)Google Scholar
Rosenbusch, F. & Gelormini, N. (1946). Experiencias sobre hidatidosis. Institute de Para-sitologia y Enfermedades Parasitarias. Facultad de Agronomia y Veterinaria. Universidad de Buenos Aires 3, 3966.Google Scholar
Ross, I. C. (1929). Observations on the hydatid parasite Echinococcus granulosus (Batsch, 1786) Rudolphi, 1805, and the control of hydatid disease in Australia. Bulletin of the Council for Scientific and Industrial Research, Australia 40, 63 pp.Google Scholar
Schwabe, C. W., Schinazi, L. A. & Kilejian, A. (1959). Host-parasite relationships in echinococcosis. II. Age resistance to secondary echinococcosis in the white mouse. American Journal of Tropical Medicine and Hygiene 8, 2936.CrossRefGoogle ScholarPubMed
Schwabe, C. W., Luttermoser, G. W., Koussa, M. & Ali, S. R. (1964). Serial passage of fertile hydatid cysts of Echinococcus granulosus in absence of the definitive host. Journal of Parasitology, U.S.A. 50, 260.CrossRefGoogle ScholarPubMed
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society, Great Britain, Series B 171, 483–94.Google ScholarPubMed
Smyth, J. D. (1962). Studies on tapeworm physiology. X. Axenic cultivation of the hydatid organism, Echinococcus granulosus; establishment of a basic technique. Parasitology 52, 441–57.CrossRefGoogle Scholar
Smyth, J. D. (1967). Studies on tapeworm physiology. XI. In vitro cultivation of Echinococcus granulosus from the protoscolex to the strobilate stage. Parasitology 57, 111–33.Google Scholar
Sweatman, G. K. & Williams, R. J. (1962). Wild animals in New Zealand as hosts of Echinococcus granulosus and other taeniid tapeworms. Transactions of the Royal Society of New Zealand, Zoology 2, 221–50.Google Scholar
Sweatman, G. K. & Williams, R. J. (1963). Comparative studies on the biology and morphology of Echinococcus granulosus from domestic livestock, moose and reindeer. Parasitology 53, 339–90.Google Scholar
Webster, G. A. & Cameron, T. W. M. (1961). Observations on, experimental infections with Echinococcus in rodents. Canadian Journal of Zoology 39, 877–91.CrossRefGoogle Scholar
Williams, R. J. & Sweatman, G. K. (1963). On the transmission, biology and morphology of Echinococcus granulosus equinus, a new subspecies of hydatid tapeworm in horses in Great Britain. Parasitology 53, 391407.Google Scholar
Yamashita, J. (1968). Development of Echinococcus in laboratory animals. Bulletin of the World Health Organisation 39, 127–9.Google Scholar
Yamashita, J., Ohbayashi, M. & Konno, S. (1956). Studies on Echinococcosis. IV. Experimental infection of the white mouse. Japanese Journal of Veterinary Research 4, 123–8.Google Scholar