Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:25:21.107Z Has data issue: false hasContentIssue false

Determinants for resistance and susceptibility to microfilaraemia in Litomosoides sigmodontis filariasis

Published online by Cambridge University Press:  12 July 2001

W. H. HOFFMANN
Affiliation:
Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D72074 Tübingen, Germany
A. W. PFAFF
Affiliation:
Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D72074 Tübingen, Germany
H. SCHULZ-KEY
Affiliation:
Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D72074 Tübingen, Germany
P. T. SOBOSLAV
Affiliation:
Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, D72074 Tübingen, Germany

Abstract

Filarial infections of humans are chronic diseases. Despite an ongoing immune response, adult filariae continuously produce their offspring, the microfilariae (Mf), which are able to persist in sufficient numbers to ensure transmission. In this study, host- and parasite-derived factors, which contribute to persistence of Mf, were investigated using the filariasis model of Litomosoides sigmodontis in mice. Different strains of mice were found to differ widely in their capability to eliminate circulating Mf. Studies of congenic mouse strains showed that early and rapid clearance of Mf was mediated by activation pathways relevant to innate immunity, whereas late or delayed clearance of Mf was pre-determined by MHC-related factors. Genetic knock-out of genes for the MHC class-II molecules totally abrogated resistance. Most interestingly, the presence of only 1 adult female, but not male worms, renders all mice susceptible, irrespective of the genetic background, enabling Mf to circulate for extended periods of time. Such prolonged microfilaraemia was also observed in L. sigmodontis-infected animals challenged with heterologous Mf of Acanthocheilonema viteae. The use of cytokine gene knock-out mice showed that persistence of L. sigmodontis Mf was facilitated by IL-10, but not by IL-4 or IFN-γ. In conclusion, irrespective of a resistant or susceptible host genetic background, survival of Mf of L. sigmodontis in mice is decisively regulated by the presence of adult female L. sigmodontis which will skew and exploit immune responses to facilitate the survival and persistence of their offspring in the infected host.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLEN, J. E., LAWRENCE, R. A. & MAIZELS, R. M. (1996). APC for mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. International Immunology 8, 143151.CrossRefGoogle Scholar
ALLEN, J. E. & MACDONALD, A. S. (1998). Profound suppression of cellular proliferation mediated by the secretions of nematodes. Parasite Immunology 20, 241247.CrossRefGoogle Scholar
AL-QAOUD, K. M., FLEISCHER, B. & HOERAUF, A. (1998). The Xid defect imparts susceptibility to experimental murine filariosis-association with a lack of antibody and IL-10 production by B cells in response to phosphorylcholine. International Immunology 10, 1725.CrossRefGoogle Scholar
AL-QAOUD, K. M., PEARLMAN, E., HARTUNG, T., KLUKOWSKI, J., FLEISCHER, B. & HOERAUF, A. (2000). A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. International Immunology 12, 899908.CrossRefGoogle Scholar
AL-QAOUD, K. M., TAUBERT, A., ZAHNER, H., FLEISCHER, B. & HOERAUF, A. (1997). Infection of BALB/c mice with the filarial nematode Litomosoides sigmodontis: role of CD4+ T cells in controlling larval development. Infection and Immunity 65, 24572461.Google Scholar
BAIN, O., WANJI, S., VUONG, P. N., MARECHAL, P., LE GOFF, L. & PETIT, G. (1994). Larval biology of six filariae of the sub-family Onchocercinae in a vertebrate host. Parasite 1, 241254.CrossRefGoogle Scholar
BEHNKE, J. M., HANNAH, J. & PRITCHARD, D. I. (1983). Nematospiroides dubius in the mouse: evidence that adult worms depress the expression of homologous immunity. Parasite Immunology 5, 397408.CrossRefGoogle Scholar
CHANDRASHEKAR, R., RAO, U. R., RAJASEKARIAH, G. R. & SUBRAHMANYAM, D. (1984). Isolation of microfilariae from blood on iso-osmotic Percoll® gradients. Indian Journal for Medical Research 79, 497501.Google Scholar
DOETZE, A., SATOGUINA, J., BURCHARD, G., RAU, T., LOLIGER, C., FLEISCHER, B. & HOERAUF, A. (2000). Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r) 1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. International Immunology 12, 623630.CrossRefGoogle Scholar
ELKHALIFA, M. Y., GHALIB, H. W., DAFA'ALLA, T. & WILLIAMS, J. F. (1991). Suppression of human lymphocyte responses to specific and non-specific stimuli in human onchocerciasis. Clinical and Experimental Immunology 86, 433439.CrossRefGoogle Scholar
FANNING, M. M. & KAZURA, J. W. (1983). Genetic association of murine susceptibility to Brugia malayi microfilaraemia. Parasite Immunology 5, 305316.CrossRefGoogle Scholar
GEIGER, S. M., HOFFMANN, W., RAPP, J., SCHULZ-KEY, H. & EISENBEISS, W. F. (1997). Filariidae: cross-protection in filarial infections. Experimental Parasitology 83, 352356.Google Scholar
HAQUE, A., WORMS, M. J., OGILVIE, B. M. & CAPRON, A. (1980). Dipetalonema viteae: Microfilariae production in various mouse strains and in nude mice. Experimental Parasitology 49, 398404.CrossRefGoogle Scholar
HARNETT, W. & HARNETT, M. M. (1993). Inhibition of murine B cell proliferation and down-regulation of protein kinase C levels by a phosphorylcholine-containing filarial excretory-secretory product. Journal of Immunology 151, 48294837.Google Scholar
HOERAUF, A. & FLEISCHER, B. (1997). Immune responses to filarial infection in laboratory mice. Medical and Microbiological Review 185, 207215.Google Scholar
HOFFMANN, W. H., PETIT, G., SCHULZ-KEY, H., TAYLOR, D. W., BAIN, O. & LE GOFF, L. (2000). Litomosoides sigmodontis in mice: reappraisal of an old model for filarial research. Parasitology Today 16, 387389.CrossRefGoogle Scholar
KELLER, R. P. & NEVILLE, M. C. (1986). Determination of total protein in human milk: comparison of methods. Clinical Chemistry 32, 120123.Google Scholar
KOPF, M., LE GROS, G., BACHMANNN, M., LAMERS, M. C. & BLUETHMAN, H. (1993). Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature, London 362, 245248.CrossRefGoogle Scholar
LAWRENCE, R. A. (1996). Lymphatic filariasis: what mice can tell us. Parasitology Today 12, 267271.CrossRefGoogle Scholar
LE GOFF, L., MARECHAL, P., PETIT, G., TAYLOR, D. W., HOFFMANN, W. & BAIN, O. (1997). Early reduction of the challenge recovery rate following immunization with irradiated infective larvae in a filaria mouse system. Tropical Medicine and International Health 2, 11701174.CrossRefGoogle Scholar
LE GOFF, L., MARTIN, C., OSWALD, I. P., VUONG, P. N., PETIT, G., UNGEHEUER, M. N. & BAIN, O. (2000). Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae. Parasitology 120, 271280.CrossRefGoogle Scholar
MACDONALD, A. S., MAIZELS, R. M., LAWRENCE, R. A., DRANSFIELD, I. & ALLEN, J. E. (1998). Requirement for in vivo production of IL-4, but not IL-10, in the production of proliferative suppression by filarial parasites. Journal of Immunology 147, 144151.Google Scholar
MARÉCHAL, P., LE GOFF, L., HOFFMANN, W., RAPP, J., OSWALD, I. P., OMBROUK, C., TAYLOR, D. W., BAIN, O. & PETIT, G. (1997). Immune response to the filaria Litomosoides sigmodontis in susceptible and resistant mice. Parasite Immunology 19, 273279.CrossRefGoogle Scholar
MARÉCHAL, P., LE GOFF, L., PETIT, G., DIAGNE, M., TAYLOR, D. W. & BAIN, O. (1996). The fate of the filaria Litomosoides sigmodontis in susceptible and naturally resistant mice. Parasite 3, 2531.CrossRefGoogle Scholar
OSBORNE, J. & DEVANEY, E. (1999). Interleukin-10 and antigen-presenting cells actively suppress Th1 cells in BALB/c mice infected with the filarial parasite Brugia pahangi. Infection and Immunity 67, 15991605.Google Scholar
PACIORKOWSKI, N., PORTE, P., SHULTZ, L. D. & RAJAN, T. V. (2000). B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. Journal of Experimental Medicine 191, 731735.CrossRefGoogle Scholar
PEARLMAN, E., HEINZEL, F. P., HAZLETT, F. E. JR & KAZURA, J. W. (1995). IL-12 modulation of T helper responses to the filarial helminth, Brugia malayi. Journal of Immunology 154, 46584664.Google Scholar
PETIT, G., DIAGNE, M., MARECHAL, P., OWEN, D., TAYLOR, D. W. & BAIN, O. (1992). Maturation of the filaria Litomosoides sigmodontis in BALB/c mice; comparative susceptibility of nine other inbred strains. Annales de Parasitologie Humaine et Comparée 67, 144150.CrossRefGoogle Scholar
PFAFF, A. W., SCHULZ-KEY, H., SOBOSLAY, P. T., GEIGER, S. M. & HOFFMANN, W. H. (2000a). Litomosoides sigmodontis: Dynamics of the survival of microfilariae in resistant and susceptible strains of mice. Experimental Parasitology 96, 6774.Google Scholar
PFAFF, A. W., SCHULZ-KEY, H., SOBOSLAY, P. T., GEIGER, S. M. & HOFFMANN, W. H. (2000b). The role of nitric oxide in the innate resistance to microfilariae of Litomosoides sigmodontis in mice. Parasite Immunology 22, 397407.Google Scholar
SCHÖNFELD, K. & ZAHNER, H. (2000). Immunomodulatory effects in Litomosoides sigmodontis-infected Mastomys coucha. Parasitology Research 86, 101108.CrossRefGoogle Scholar
TAYLOR, M. J., CROSS, H. F. & BILO, K. (2000). Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. Journal of Experimental Medicine 191, 14291435.CrossRefGoogle Scholar
TAYLOR, M. J. & HOERAUF, A. (1999). Wolbachia bacteria of filarial nematodes. Parasitology Today 15, 437442.CrossRefGoogle Scholar
VELUPILLAI, P., SECOR, W. E., HOERAUF, A. M. & HARN, D. A. (1997). B-1 cell (CD5+B220+) outgrowth in murine schistosomiasis is genetically restricted and is largely due to activation by polylactosamine sugars. Journal of Immunology 158, 338344.Google Scholar
VINCENT, A. L., SODEMAN, W. A. & WINTERS, A. (1980). Development of Brugia pahangi in normal and nude mice. Journal of Parasitology 66, 448.CrossRefGoogle Scholar
XIE, H., BAIN, O. & WILLIAMS, S. A. (1994). Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. Parasite 1, 141151.CrossRefGoogle Scholar