Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:29:13.208Z Has data issue: false hasContentIssue false

Detection of linkage disequilibrium in Trypanosoma brucei isolated from tsetse flies and characterized by RAPD analysis and isoenzymes

Published online by Cambridge University Press:  06 April 2009

J. R. Stevens
Affiliation:
UMR CNRS/ORSTOM 9926: Génétique Moléculaire des Parasites et des Insectes Vecteurs, ORSTOM, 911 Avenue Agropolis, BP 5045, 34032, Montpellier, France
M. Tibayrenc
Affiliation:
UMR CNRS/ORSTOM 9926: Génétique Moléculaire des Parasites et des Insectes Vecteurs, ORSTOM, 911 Avenue Agropolis, BP 5045, 34032, Montpellier, France

Summary

This study analyses the different populations of Trypanosoma brucei spp. which may coexist within the midgut of wild tsetse flies (Stevens et al. 1994). Cloned trypanosome populations characterized by multilocus enzyme electrophoresis (MLEE) were further analysed by the random amplified polymorphic DNA (RAPD) technique, allowing detection of genetic variation at a finer level than that possible by MLEE. Genetic distance matrices derived from the results of each of the two biochemical methods were calculated and compared using a computer program based on the method of Mantel (1967). The observed correlation was used to investigate the degree of linkage disequilibrium (LD) in the data, association between unrelated polymorphic markers providing a measure of the departure from panmixia. The potential of each biochemical method to detect linkage was evaluated by an extended Mantel test. The MLEE/RAPD correlation test evidenced significant LD within the population, suggesting a predominantly clonal method of reproduction for these West African trypanosomes. Analysis of RAPD data by the extended Mantel test also showed significant LD, while the results with MLEE data were less conclusive, providing an indication of the relative potential of the two techniques to detect fine genetic variation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ben, Abderrazak S. (1993). Variabilité génétique des populations de Plasmodium falciparum. Thèse de Doctoral d'Université, Université des Sciences et Techniques du Languedoc, Montpellier II.Google Scholar
Ben, Abderrazak S., Guerrini, F., Mathieu-Daudé, F. Truc, P., Neubauer, K., Lewicka, K., Barnabé, C. & Tibayrenc, M. (1993). Isoenzyme electrophoresis for parasite characterization. In Methods in Molecular Biology, Vol 21: Protocols in Molecular Parasitology (ed. Hyde, J. E.), pp. 361382. Totowa, NJ: Humana Press Inc.Google Scholar
Cibulskis, R. E. (1988). Origins and organization of genetic diversity in natural populations of Trypanosoma brucei. Parasitology 96, 303–22.CrossRefGoogle ScholarPubMed
Cibulskis, R. E. (1992). Genetic variation in Trypanosoma brucei and the epidemiology of sleeping sickness in the Lambwe Valley, Kenya. Parasitology 104, 99109.CrossRefGoogle ScholarPubMed
Gibson, W. (1990). Trypanosome diversity in Lambwe Valley, Kenya – sex or selection? Parasitology Today 6, 342–3.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. De, C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Godfrey, D. G., Baker, R. D., Rickman, L. R. & Mehlitz, D. (1990). The distribution, relationships and identification of enzymic variants within the subgenus Trypanozoon. Advances in Parasitology 29, 1—74.Google ScholarPubMed
Graham, J., McNicol, R. J., Greig, K. & Van De Ven, W. T. G. (1994). Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced by random primers. Journal of Horticultural Science 69, 123–30.CrossRefGoogle Scholar
Guerrini, F. (1993). Génétique des populations et phylogénie des Leishmania du Nouveau-Monde. Thèse ès Sciences, Universitè des Sciences et Techniques du Languedoc, Montpellier II.Google Scholar
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Science Naturelle 44, 223–70.Google Scholar
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173—5.CrossRefGoogle ScholarPubMed
Letch, C. A. (1984). A mixed population of Trypanozoon in Glossina palpalis palpalis from Ivory Coast. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 627–30.CrossRefGoogle ScholarPubMed
Manly, B. F. J. (1985). The Statistics of Natural Selection on Animal Populations. London: Chapman and Hall.CrossRefGoogle Scholar
Mantel, N. (1967). The detection of disease clustering and a generalised regression approach. Cancer Research 27, 209–20.Google Scholar
Masiga, D. K., Smyth, A. J., Hayes, P., Bromidge, T. J. & Gibson, W. C. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology 22, 909–18.CrossRefGoogle ScholarPubMed
Maynard, Smith J., Smith, N. H., O'rourke, M. & Spratt, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Sciences, USA 90, 4384–8.Google Scholar
Pujol, C., Reynes, J., Renaud, F., Raymond, M., Tibayrenc, M., Ayala, F. J., Janbon, F., Mallie, M. & Bastide, J.-M. (1993). The yeast Candida albicans has a clonal mode of reproduction in a population of infected HIV + patients. Proceedings of the National Academy of Sciences, USA 90, 9456–9.CrossRefGoogle Scholar
Schütt, I. D. & Mehlitz, D. (1981). On the persistence of human serum resistance and isoenzyme patterns of Trypanozoon clones in experimentally infected pigs. Acta Tropica 38, 367–73.Google ScholarPubMed
Sokal, R. R. & Michener, C. D. (1958). A Statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin 38, 1409–38.Google Scholar
Stevens, J. R. & Cibulskis, R. E. (1990). Analysing isoenzyme band patterns using similarity coefficients: a personal computer program. Computer Methods and Programs in Biomedicine 33, 205–12.CrossRefGoogle ScholarPubMed
Stevens, J. R. & Godfrey, D. G. (1992). Numerical taxonomy of Trypanozoon based on polymorphisms in a reduced range of enzymes. Parasitology 104, 7586.CrossRefGoogle Scholar
Stevens, J. R., Mathieu-Daudé, F., McNamara, J. J., Mizen, V. H. & Nzila, A. (1994). Mixed populations of Trypanosoma brucei in wild Glossina palpalis palpalis. Tropical Medicine and Parasitology 45 (in the Press).Google ScholarPubMed
Stevens, J. R. & Welburn, S. C. (1993). Genetic processes within an epidemic of sleeping sickness in Uganda. Parasitology Research 79, 421–7.CrossRefGoogle ScholarPubMed
Tait, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.CrossRefGoogle ScholarPubMed
Tibayrenc, M. & Ayala, F. J. (1987). Forte corrélation entre classification isoenzymatique et variabilité de l'ADN kinétoplastique chez Trypanosoma cruzi. Comptes-Rendus de l'Académic des Sciences, Paris 304, 8992.Google ScholarPubMed
Tibayrenc, M. & Ayala, F. J. (1988). Isozyme variability in Trypanosoma cruzi, the agent of Chagas' disease: genetical, taxonomical and epidemiological significance. Evolution 42, 277–92.Google ScholarPubMed
Tibayrenc, M., Kjellberg, F., Arnaud, J., Oury, B., Brenière, S. F., Darde, M.-L. & Ayala, F. J. (1991). Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proceedings of the National Academy of Sciences, USA 88, 5129–33.CrossRefGoogle ScholarPubMed
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle ScholarPubMed
Tibayrenc, M., Neubauer, K., Barnabé, C., Guerrini, F., Skarecky, D. & Ayala, F. J. (1993). Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proceedings of the National Academy of Sciences, USA 90, 1335–9.CrossRefGoogle ScholarPubMed
Truc, P. & Tibayrenc, M. (1993). Population genetics of Trypanosoma brucei in Central Africa: taxonomic and epidemiological significance. Parasitology 106, 137–49.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Bernards, A., Rijsewijk, F. & Borst, P. (1982). Characterization of the DNA duplication–transposition that controls the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Research 10, 593609.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafolski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.CrossRefGoogle ScholarPubMed