Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T07:04:51.187Z Has data issue: false hasContentIssue false

Detection of density-dependent growth and fecundity of helminths in natural infections

Published online by Cambridge University Press:  06 April 2009

A. W. Shostak
Affiliation:
Department of Zoology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
M. E. Scott
Affiliation:
Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, Québec H9X 1C0, Canada

Summary

Density-dependent constraints on parasite growth, survival or reproduction are thought to be important in preventing the unchecked increase in parasite numbers within individual hosts or host populations. While it is important to know where, and with what severity, density dependence is acting within the parasite life-cycle, interpretation of data from natural infections is difficult. In this paper, we present a Monte Carlo simulation technique for examining such data for evidence of density dependence. We also describe how this technique may be used to distinguish among mechanisms hypothesized to generate density-dependent phenomena.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cook, R. L.& Roberts, L. S. (1991). In vivo effects of putative crowding factors on development of Hymenolepis diminuta. Journal of Parasitology 77, 21–5.CrossRefGoogle ScholarPubMed
Dietz, K. (1988). Density dependence in parasite transmission dynamics. Parasitology Today 4, 91–7.CrossRefGoogle ScholarPubMed
Dobson, A. P. (1985). Inequalities in the individual reproductive success of parasites. Parasitology 92, 675–82.CrossRefGoogle Scholar
Hall, A. (1982). Quantitative variability of nematode egg counts in faeces: a study among rural Kenyans. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 682–7.CrossRefGoogle Scholar
Hesselberg, C. A.& Andreassen, J. (1975). Some influences of population density on Hymenolepis diminuta in rats. Parasitology 71, 517–23.CrossRefGoogle ScholarPubMed
Holland, C. V., Crompton, D. W. T., Taren, D. L., Nesheim, M. C., Sanjur, D., Barbeau, I.& Tucker, K. (1987). Ascaris lumbricoides infection in pre-school children from Chiriqui Province, Panama. Parasitology 95, 615–22.CrossRefGoogle ScholarPubMed
Jackson, H.& Tinsley, R. (1988). Environmental influences on egg production by the monogenean Protopolystoma xenopodis. Parasitology 97, 115–27.CrossRefGoogle Scholar
Keymer, A. (1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573–87.CrossRefGoogle ScholarPubMed
Keymer, A. E.& Slater, A. F. G. (1987). Helminth fecundity: density dependence or statistical illusion? Parasitology Today 3, 56–8.CrossRefGoogle ScholarPubMed
Medley, G.& Anderson, R. M. (1985). Density-dependent fecundity in Schistosoma mansoni infections in man. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 532–4.CrossRefGoogle ScholarPubMed
Pacala, S. W.& Dobson, A. P. (1988). The relation between the number of parasites/host and host age: population dynamics causes and maximum likelihood estimation. Parasitology 96, 197210.CrossRefGoogle Scholar
Read, C. P. (1951). The ‘crowding effect’ in tapeworm infections. Journal of Parasitology 37, 174–8.CrossRefGoogle ScholarPubMed
Roberts, L. S. (1961). The influence of population density on patterns and physiology of growth in Hymenolepis diminuta (Cestoda: Cyclophyllidea) in the definitive host. Experimental Parasitology 11, 332–71.CrossRefGoogle ScholarPubMed
Roberts, L. S.& Insler, G. D. (1982). Developmental physiology of cestodes. XVII. Some biological properties of putative ‘crowding factors’ in Hymenolepis diminuta. Journal of Parasitology 68, 263–9.CrossRefGoogle ScholarPubMed
Scott, M. E.& Lewis, J. W. (1987). Population dynamics of helminth parasites in wild and laboratory rodents. Mammal Review 17, 95103.CrossRefGoogle Scholar
Shostak, A. W. (1986). Sources of variability in life-history characteristics of the annual phase of Triaenophorus crassus (Cestoda: Pseudophyllidea). Ph.D. thesis. University of Manitoba.Google Scholar
Shostak, A. W.& Dick, T. A. (1987). Individual variability in reproductive success of Triaenophorus crassus Forel (Cestoda: Pseudophyllidea), with comments on use of the Lorenz curve and Gini coefficient. Canadian Journal of Zoology 65, 2878–85.CrossRefGoogle Scholar
Shostak, A. W., Rosen, R. B.& Dick, T. A. (1985). The Use of growth curves to assess the crowding effect on procercoids of the tapeworm Triaenophorus crassus in the copepod host Cyclops bicuspidatus thomasi. Canadian Journal of Zoology 63, 2343–51.CrossRefGoogle Scholar
Sinniah, D. (1982). Daily egg production of Ascaris lumbricoides; the distribution of eggs in the faeces and the variability of egg counts. Parasitology 84, 167–75.CrossRefGoogle ScholarPubMed
Smith, G. (1984). Density-dependent mechanisms in the regulation of Fasciola hepatica populations in sheep. Parasitology 88, 449–61.CrossRefGoogle ScholarPubMed
Sokal, R. R.& Rohlf, F. J. (1981). Biometry. 2nd Edn.San Francisco: W.H. Freeman and Company.Google Scholar
Wakelin, D. (1986). Genetic and other constraints on resistance to infection with gastrointestinal nematodes. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 742–7.CrossRefGoogle ScholarPubMed
Zavras, E. T.& Roberts, L. S. (1985). Developmental physiology of cestodes: cyclic nucleotides and the identity of putative crowding factors in Hymenolepis diminuta. Journal of Parasitology 71, 96105.CrossRefGoogle ScholarPubMed