Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T01:09:12.421Z Has data issue: false hasContentIssue false

Control of insects by bacteria

Published online by Cambridge University Press:  06 April 2009

H. D. Burges
Affiliation:
Glasshouse Crops Research Institute, Worthing Road, Littlehampton, West Sussex BN16 3PU

Summary

All bacteria in microbial insecticides are species of Bacillus and form spores since they have to survive in the environment and on the shelf. They can be formulated as wettable powders, suspensions and dusts for application with conventional pest control machinery. All are safe to man and virtually all non-target organisms. Development costs are relatively low, but host specificity greatly restricts markets, the largest being ca. 2000 tons per annum in the West for B. thuringiensis. All act only after ingestion, a disadvantage because there is no contact action and usually only larvae are attacked. Three main groups have special features that determine their commercial success.

The B. popilliae group is produced only in vivo which limits production by three small firms. The Japanese beetle has been controlled in grassland in the warm parts of the USA by single applications of spores in heaps, spaced 2 m each way. The bacterium spreads slowly to untreated areas, is very persistent and kills only by infection.

The B. thuringiensis group kills larvae of Lepidoptera, mosquitoes and blackflies, mainly by gut poisoning with a protein crystal toxin. It rapidly paralyses mouthparts and gut, stopping crop damage. It is readily produced by deep liquid fermentation, but does not persist and needs repeated application during the pest season. Products containing no beta exotoxin can be applied at unlimited dosage to food crops up to harvest. Only one application is needed for stored grain. After 20 years' use of strains against Lepidoptera, a different strain is now used commercially against mosquitoes and blackflies (only 5 years after its discovery), although improvements in formulation for aquatic application are needed. A recent new product based on the beta exotoxin is used in Finland only against flies in pig houses because it has some vertebrate toxicity.

The B. sphaericus group is similar to B. thuringiensis, except that its proteinaceous toxin is different, is situated in the spore wall in strain 1593, and attacks only mosquitoes. Now at the pilot production stage, its commercial future depends on whether it is more potent than B. thuringiensis against certain species and whether it can recycle to give effective extended mosquito control in some environments.

Intensive selection from natural isolates has improved potency 100 to 600 fold. This selective effort must be maintained and improved by genetic manipulation, which can be used to develop greater potential, particularly since DNA coding for the crystal toxin is carried on plasmids. This also gives speculative hope that the toxin may be incorporated into natural aquatic bacteria for mosquito control and into plants for protection against lepidopterous larvae. A great advantage is that these bacteria do not harm beneficial fauna to cause pest resurgence. At present, the main use lies in integrated pest control systems, although bacteria are not likely to supplant chemical insecticides on a large scale in the near future.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlersberg, L. J., Singer, M. & Ende, E. (1969). Redistribution and elimination of intravenously infected latex particles in mice. Research Journal of the Reticuloendothelial Society 6, 536–60.Google Scholar
Allen, B. T. & Wilkinson, H. A. (1969). A case of meningitis and generalized Schwartzman reaction caused by Bacillus sphaericus. Johns Hopkins Medical Journal 125, 813.Google ScholarPubMed
Alzieu, C., Barjac, H. de & Maggi, P. (1970). Tolérance de la faune marine à Bacillus thuringiensis. Science et Pêche Bulletin Institut Pêches Maritimes 250, 1118.Google Scholar
Andrews, R. E. Jr., Iandolo, J. J., Campbell, B. S., Davidson, L. I. & Bulla, L. A. Jr., (1980). Rocket immunoelectrophoresis of the entomocidal parasporal crystal of Bacillus thuringiensis subsp. kurstaki. Applied Environmental Microbiology 40, 897900.CrossRefGoogle ScholarPubMed
Aronson, J. N. & Tillinghast, J. (1977). A chemical study of the parasporal crystal of Bacillus thuringiensis. In Spore Research 1976 vol. 1, (ed. Barker, A. N., Wolf, L. J., Ellar, D. J., Dring, G. J. & Gould, G. W.), pp. 351357London and New York: Academic Press.Google Scholar
Bailey, L. (1971). The safety of pest–insect pathogens for beneficial insects. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 491505London and New York: Academic Press.Google Scholar
Barjac, H. de (1978). Etude cytologique de l'action de Bacillus thuringiensis var. israelensis sur larvae de moustiques. Compte rendu de l'Academic des Sciences de Paris, Série D 286, 1629–32.Google Scholar
Barjac, H. de (1981). Annual Report for 1980. Pasteur Insitute. T16/181/V2/21 (780420). 11 pp.Google Scholar
Barjac, H. de & Coz, J. (1979). Sensibilité comparée de six espèces différentes de moustiques à Bacillus thuringiensis var israelensis. Bulletin of the World Health Organization 57, 139–41.Google ScholarPubMed
Barjac, H. de, Larget, I., Cosmao, V., Benichou, L. & Viviani, G. (1979). Inocuité de Bacillus sphaericus, souche 1593, pour les mammifères. Unpublished mimeographed document WHO/VBC/79.731, 20 pp.Google Scholar
Barjac, H. de, Veron, M. & Cosmao-Dumanoir, V. (1980). Caractérisation biochimique et sérologique de souches de Bacillus sphaericus pathogènes ou non pour les moustiques. Annates de Microbiologic (Institut Pasteur) 131B, 191201.Google Scholar
Beard, R. L. (1964). The present status of milky disease of Japanese beetle in Connecticut. Entomophaga. Mémoire Hors Série Numéro 2, 47–9.Google Scholar
Benz, G. & Altwegg, A. (1975). Safety of Bacillus thuringiensis for earthworms. Journal of Invertebrate Pathology 26, 125–6.CrossRefGoogle ScholarPubMed
Biochem Products (1981). Bactimos for mosquito and black fly control. Technical Information: Biochem Products, 100 Rockland Road, Montchanin, Delaware; USA.Google Scholar
Bond, R. P. M., Boyce, C. B. C., Rogoff, M. H. & Shieh, T. R. (1971). The thermostable exotoxin of Bacillus thuringiensis. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 275303London and New York: Academic Press.Google Scholar
Bonnefoi, A. & Barjac, H. de. (1963). Classification des souches du groupe Bacillus thuringiensis par la determination de l'antigène flagellaire. Entomophaga 8, 223–9.CrossRefGoogle Scholar
Bourgouin, C. & Charles, J. F. (1981). Ultrastructure des spores de Bacillus sphaericus après extraction physique d'un facteur toxique pour les larves d'Anophèles. Revue de Cytologic et de Biologic Végétales de Botaniste 4, 99109.Google Scholar
Bulla, L. A. Jr., Andrews, R. E. Jr. & Kramer, K. J. (1981). Comparative biochemistry of entomocidal parasporal crystals of selected Bacillus thuringiensis strains. Journal of Bacteriology 145, 1052–62.Google Scholar
Bulla, L. A. Jr., Kramer, K. J. & Davidson, L. I. (1977). Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. Journal of Bacteriology 130, 375–83.CrossRefGoogle ScholarPubMed
Burges, H. D. (1971). Possibilities of pest resistance to microbial control agents. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 445457London and New York: Academic Press.Google Scholar
Burges, H. D. (1973). Enzootic diseases of insects. In Regulation of Insect Populations by Microorganisms (ed. Bulla, L. A. Jr.). Annals of the New York Academy of Sciences 217, 3149.Google Scholar
Burges, H. D. (1981 a). Safety, safety testing and quality control of microbial pesticides. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 736767London and New York: Academic Press.Google Scholar
Burges, H. D. (1981 b). Strategy for the microbial control of pests in 1980 and beyond. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 798836London and New York: Academic Press.Google Scholar
Burges, H. D., Hillyer, S. & Chanter, D. O. (1975). Effect of ultraviolet and gamma rays on the activity of δ-endotoxin protein crystals of Bacillus thuringiensis. Journal of Invertebrate Pathology 25, 59.CrossRefGoogle ScholarPubMed
Burges, H. D. & Thomson, E. M. (1971). Standardization and assay of microbial insecticides. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 591622London and New York: Academic Press.Google Scholar
Burges, H. D., Thomson, E. M. & Latchford, R. A. (1976). Importance of spores and δ-endotoxin protein crystals of Bacillus thuringiensis in Galleria mellonella. Journal of Invertebrate Pathology 27, 8794.CrossRefGoogle Scholar
Busvine, J. R. (1971). A Critical Review of the Techniques for Testing Insecticides, 2nd ed.Dorchester: Dorset Press.Google Scholar
Carlberg, G., Holmberg, A. & Sievänen, R. (1978). Fermentation of Bacillus thuringiensis for exotoxin production – a process analysis study. Report B51, December 1978. Systems Theory Laboratory Report Series. Helsinki: Helsinki University of Technology.Google Scholar
Chestukhina, G. G., Zalunin, I. A., Kostina, L. I., Kotova, T. S., Kattrukha, S. P. & Stepanov, V. M. (1980). Crystal-forming proteins of Bacillus thuringiensis. The limited hydrolysis by endogeneous proteinases as a cause of their apparent multiplicity. Biochemistry Journal 187, 457–65.CrossRefGoogle ScholarPubMed
Chilcott, C. N., Kalmakoff, J. & Pillai, J. S. (1981). The biological significance of protease(s) in Bacillus thuringiensis var. israelensis crystals. Proceedings of the University of Otago Medical School 59, 40–1.Google Scholar
Chu, C.-Y., Clark, B. D. & Dean, D. H. (1982). Relationship between plasmid DNA, crystal production, and mosquito toxicity in Bacillus thuringiensis var. israelensis. Molecular and General Genetics (in the Press).Google Scholar
Clark, B. D., Perlak, F. J., Chu, C.-Y. & Dean, D. H. (1981). The Bacillus thuringiensis genetic systems.Google Scholar
Colbo, M. H. & Thompson, B. H. (1978). An efficient technique for laboratory rearing of Simulium verecundum S. & J. (Diptera: Simuliidae). Canadian Journal of Zoology 56, 507–10.CrossRefGoogle ScholarPubMed
Colbo, M. H. & Undeen, A. H. (1980). Effect of Bacillus thuringiensis var. israelensis on non-target insects in stream trials for control of Simuliidae. Mosquito News 40, 368–71.Google Scholar
Cooksey, K. E. (1971). The protein crystal toxin of Bacillus thuringiensis biochemistry and mode of action. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 247274London and New York: Academic Press.Google Scholar
Couch, T. L. (1981). Mosquito pathogenicity of Bacillus thuringiensis var. israelensis. Developments in Industrial Microbiology 22, 6168.Google Scholar
Couch, T. L. & Ignoffo, C. M. (1981). Formulation of insect pathogens. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 621634London and New York: Academic Press.Google Scholar
Dastidar, P. G. & Nickerson, K. W. (1979). Interchain crosslinks in the entomocidal Bacillus thuringiensis crystal. FEBS Letters 108, 411–14.CrossRefGoogle Scholar
Davidson, E. W. (1981). Toxin-producing bacilli other than Bacillus thuringiensis. In Pathogenesis of Invertebrate Microbial Diseases (ed. Davidson, E. W.), pp. 269291Towota N.J.: Allanheld, Osmun.Google Scholar
Davidson, E. W., Morton, H. L., Moffett, J. O. & Singer, S. (1977). Effect of Bacillus sphaericus strain SS II-1 on honey bees, Apis mellifera. Journal of Invertebrate Pathology 29, 344–6.CrossRefGoogle Scholar
Davidson, E. & Myers, P. (1981). Parasporal inclusions in Bacillus sphaericus. FEMS Microbiological Letters 10, 261–5.CrossRefGoogle Scholar
Davidson, E. W., Sweeney, A. W. & Cooper, R. (1981). Comparative field trials of Bacillus sphaericus strain 1593 and B. thuringiensis var. israelensis commercial powder formulations. Journal of Economic Entomology 74, 350–4.CrossRefGoogle Scholar
Dejoux, C. (1979). Recherches preliminaires concernant l'action de Bacillus thuringiensis israelensis de Barjac, sur la faune d'invertébrés d'un cours d'eau tropical. Unpublished mimeographed document, WHO/VBC/79. 721.Google Scholar
DeLucca, A. J. II, Simonson, J. G. & Larson, A. D. (1981). Bacillus thuringiensis distribution in soils of the United States. Canadian Journal of Microbiology 27, 865–70.CrossRefGoogle ScholarPubMed
Dempah, J. & Coz, J. (1979). Essais de Bacillus thuringiensis israelensis sur les moustiques. Unpublished mimeographed document WHO/VBC/79.719, 10 pp.Google Scholar
Dulmaoe, H. T. & Cooperators (1981). Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 193222London and New York: Academic Press.Google Scholar
Dulmage, H. T. & Rhodes, R. A. (1971). Production of pathogens in artificial media. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 507540London and New York: Academic Press.Google Scholar
Dulmage, H. T., Wolfenbarger, D. A., Lukefahr, M. J. & Correa, J. A. (1971). Field tests with the HD-1 formulation of the δ-endotoxin of Bacillus thuringiensis against the cabbage looper on cabbage. Journal of Economic Entomology 64, 1421–2.CrossRefGoogle ScholarPubMed
Dunbar, D. M. & Beard, R. L. (1975). Present status of milky disease of Japanese and oriental beetles in Connecticut. Journal of Economic Entomology 68, 453–7.CrossRefGoogle Scholar
Dutky, S. R. (1963). The milky diseases. In Insect Pathology, vol. 2 (ed. Steinhaus, E. A.), pp. 75115New York and London: Academic Press.CrossRefGoogle Scholar
Ermakova, L. M., Galushka, E. P., Strongin, A. Y., Sladkova, I. A., Rebentish, B. A., Andreeva, M. V. & Stephanov, V. M. (1978). Plasmids of crystal forming Bacilli and the influence of growth medium composition on their appearance. Journal of General Microbiology 107, 169–71.CrossRefGoogle Scholar
Farrar, W. E. (1963). Serious infections due to ‘non-pathogenic’ organisms of the genus Bacillus. American Journal of Medicine 34, 134–41.CrossRefGoogle ScholarPubMed
Fast, P. G. (1981). The crystal toxin of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 223248London and New York: Academic Press.Google Scholar
Fast, P. G. & Martin, W. G. (1980). Bacillus thuringiensis parasporal crystal toxin: dissociation into toxic low molecular weight peptides. Biochemical and Biophysical Research Communications 95, 1314–20.CrossRefGoogle ScholarPubMed
Federici, B. A. & Mulla, M. S. (1981). Site of action, pathogenesis, and field efficacy of BTI against mosquito larvae. Abstract XlVth Annual Meeting, Society for Invertebrate Pathology,Montana State University,Bozeman,August 17–21,, pp. 12–13.Google Scholar
Feng, S. Y. (1966). Experimental bacterial infections in the oyster Crassostrea virgica. Journal of Invertebrate Pathology 8, 505–11.CrossRefGoogle Scholar
Fisher, R. & Rosner, L. (1959). Toxicology of the microbial insecticide, Thuricide. Journal of Agricultural and Food Chemistry 7, 686–8,.CrossRefGoogle Scholar
Franz, J. M. (1971). Influence of environment and modern trends in crop management on microbial control. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 407444London and New York: Academic Press.Google Scholar
Garcia, R. & DesRochers, B. (1979). Toxicity of Bacillus thuringiensis var. israelensis to some Californian mosquitoes under different conditions. Mosquito News 39, 541–4.Google Scholar
Garcia, R. & Goldberg, L. J. (1977). Studies on the toxic effect of the bacterial spore ONR 60A on non-target organisms. University of California, Mosquito Control Research, Annual Report 1977, p. 29.Google Scholar
Garcia, R., Tozer, W. & DesRochers, B. (1981). Mosquito control in rice fields with Bacillus thuringiensis var. israelensis. Symposium on Rice Field Management, University of California, Davis (in the Press).Google Scholar
Gaugler, R. & Molloy, D. (1980). Feeding inhibition in black fly larvae (Diptera: Simuliidae) and its effects on the pathogenicity of Bacillus thuringiensis var. israelensis. Environmental Entomology 9, 704–8.CrossRefGoogle Scholar
Gaugler, R., Molloy, D., Haskins, T. & Rider, G. (1980). A bioassay system for the evaluation of blackfly (Diptera: Simuliidae) control agents under simulated stream conditions. Canadian Entomologist 112, 1271–6.CrossRefGoogle Scholar
Goldberg, L. J. & Ford, I. (1980). Studies on the mode of action of Bacillus thuringiensis var. israelensis (BTI): application to formulation and field larviciding. XVIth International Congress of Entomology,Kyoto, Japan,3rd August 1980.Google Scholar
Goldberg, L., Sneh, B., Battat, E. & Klein, D. (1980). Optimization of a medium for a high yield production of spore-crystal preparation of Bacillus thuringiensis effective against the Egyptian cotton leaf worm Spodoptera littoralis Boisd. Biotechnology Letters 2, 419–26.CrossRefGoogle Scholar
Gonzalez, J. M. & Carlton, B. C. (1980). Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3, 92–8.CrossRefGoogle ScholarPubMed
Griego, V. M., Moffett, D. & Spencer, K. D. (1979). Inhibition of active K+-transport in the tobacco horn worm (Manduca sexta) midgut after ingestion of Bacillus thuringiensis endotoxin. Journal of Insect Physiology 25, 283–8.CrossRefGoogle Scholar
Gullet, P. & Escaffre, H. (1979). Evaluation de Bacillus thuringiensis israelensis de Barjac pour la lutte contre les larves de Simulium damnosum s.l. II. Efficacité comparée de trois formulations expérimentales. Unpublished mimeographed document, WHO/VBC/79. 735, 7 pp.Google Scholar
Guillet, P., Escaffre, H. & Prud'hom, J. M. (1981). Evaluation des formulations expérimentales et commerciales à base de bactéries entomopathogènes utilisables contre les larves des vecteurs d'onchocercose humaine en Afrique intertropicale. Report no. 2/ONCHO/RAP/81. O.C.C.G.E. Institut de Recherches sur la Trypanosomiase et l'Onchocercose.Google Scholar
Hall, I. M., Arakawa, K. Y., Dulmage, H. T. & Correa, J. A. (1977). The pathogenicity of strains of Bacillus thuringiensis to larvae of Aedes and to Culex mosquitoes. Mosquito News 37, 246–51.Google Scholar
Harvey, W. R. & Wolfersberger, M. G. (1979). Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. Journal of Experimental Biology 83, 293304.CrossRefGoogle ScholarPubMed
Heimpel, A. M. (1971). Safety of insect pathogens for man and vertebrates. In Microbial Control of Insects and Mites (ed. Burges, H. D. and Hussey, N. W.), pp. 469–89 London and New York: Academic Press.Google Scholar
Hembree, S. C., Frommer, R. L. & Remington, M. P. (1980). A bioassay apparatus for evaluating larvicides against blackflies. Mosquito News 40, 647–50.Google Scholar
Hertlein, B. C., Levy, R. & Miller, T. W. Jr. (1979). Recycling potential and selective retrieval of Bacillus sphaericus from soil in a mosquito habitat. Journal of Invertebrate Pathology 33, 217–21.CrossRefGoogle Scholar
Huber, H. E. & Lüthy, P. (1981). Bacillus thuringiensis delta endotoxin: composition and activation. In Pathogenesis of Invertebrate Microbial Diseases (ed. Davidson, E. W.), pp. 209–67 Totowa: N.J.Allanheld, Osmun.Google Scholar
Huber, H. E., Lüthy, P., Ebersold, H.-R. & Cordier, J.-L. (1981). The subunits of the parasporal crystal of Bacillus thuringiensis: size, linkage and toxicity. Archives of Microbiology 129, 1418.CrossRefGoogle Scholar
Hurpin, B. & Robert, P. H. (1972). Comparison of the activity of certain pathogens of the cockchafer Melolontha melolontha in plots of natural meadow land. Journal of Invertebrate Pathology 19, 291–8.CrossRefGoogle Scholar
Ignoffo, CM. (1973). Effects of entomopathogens on vertebrates. Annals of the New York Academy of Science 217, 141–64.CrossRefGoogle ScholarPubMed
Ignoffo, C. M., Couch, T. L., Garcia, C. & Kroha, M. J. (1981). Relative activity of Bacillus thuringiensis var. kurstaki and B. thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, Trichoplusia ni, Heliothis zea and Heliothis virescens. Journal of Economic Entomology 74, 218–22.CrossRefGoogle Scholar
Ignoffo, C. M., Garcia, C., Kroha, M. J. & Fukuda, T. (1980). Susceptibility of Aedes aegypti to four varieties of Bacillus thuringiensis. Mosquito News 40, 290–1.Google Scholar
Iizuka, T., Faust, R. M. & Travers, R. S. (1981 a). Comparative profiles of extra chromosomal DNA in single and multiple crystalliferous strains of Bacillus thuringiensis variety kurstaki. Journal of the Faculty of Agriculture Hokkaido University 60, 143–51.Google Scholar
Iizuka, T., Faust, R. M. & Travers, R. S. (1981 b). Isolation and partial characterization of extrachromosomal DNA from serotypes of Bacillus thuringiensis pathogenic to lepidopteran and dipteran larvae by agarose gel electrophoresis. The Journal of Sericultural Science of Japan 50, 120–33.Google Scholar
Jamback, H. & Frempong-Boadu, J. (1966). Testing black fly larvicides in the laboratory and in streams. Bulletin of the World Health Organization 34, 405–21.Google Scholar
Jarrett, P. (1981). Persistence of Bacillus thuringiensis on tomatoes. Annual Report of the Glasshouse Crops Research Insitute for 1980, p. 117.Google Scholar
Kellen, W., Clark, T., Lindgren, J., Ho, B., Rogoff, M. & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology 7, 442–8.CrossRefGoogle ScholarPubMed
Kinsinger, R. A. & McGaughey, W. H. (1976). Stability of Bacillus thuringiensis and a granulosis virus of Plodia interpunctella on stored wheat. Journal of Economic Entomology 69, 149–54.CrossRefGoogle Scholar
Klein, M. G. (1981). Advances in the use of Bacillus popilliae for pest control. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 183192London and New York: Academic Press.Google Scholar
Klier, A., Lecadet, M. M. & Rapoport, G. (1978). Transcription in vitro of sporulation specific RNAs by RNA polymerase from Bacillus thuringiensis. In Spores VII (ed. Chambliss, G. and Vary, J. C.), pp. 205212Washington, D.C., American Society of Microbiology.Google Scholar
Krieg, A., Hassan, S. & Pinsdorf, W. (1980). Comparison of the effect of the variety israelensis with other varieties of Bacillus thuringiensis on non-target organisms of the order Hymenoptera: Trichogramma cacoeciae and Apis mellifera. Am. Schädlingsk. 53, 81–3. (in German).Google Scholar
Krieg, A. & Langenbruch, G. A. (1981). Susceptibility of arthropod species to Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 837896London and New York: Academic Press.Google Scholar
Krych, V., Johnson, J. & Yousten, A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic Bacteriology 30, 476–84.CrossRefGoogle Scholar
Krywienczyk, J. & Fast, P. G. (1980). Serological relations of the crystals of Bacillus thuringiensis var. israelensis. Journal of Invertebrate Pathology 36, 139–40.CrossRefGoogle Scholar
Lacey, L. A. & Federici, B. A. (1979). Pathogenesis and midgut histopathology of Bacillus thuringiensis in Simulium vittatum (Diptera: Simuliidae). Journal of Invertebrate Pathology 33, 171–82.CrossRefGoogle Scholar
Lacey, L. A. & Lacey, J. M. (1981). The larvicidal activity of Bacillus thuringiensis var. israelensis (H-14) against mosquitoes of the central Amazon basin. Mosquito News 41, 266–70.Google Scholar
Lacey, L. A. & Mulla, M. S. (1977 a). Evaluation of Bacillus thuringiensis as a biocide of blackfly larvae (Diptera: Simuliidae). Journal of Invertebrate Pathology 30, 46–9.CrossRefGoogle ScholarPubMed
Lacey, L. A. & Mulla, M. S. (1977 b). A new bioassay unit for evaluating larvicides against black flies. Journal of Economic Entomology 70, 453–6.CrossRefGoogle Scholar
Lacey, L. A., Mulla, M. S. & Dulmage, H. T. (1978). Some factors affecting the pathogenicity of Bacillus thuringiensis Berliner against blackflies. Environmental Entomology 7, 583–8.CrossRefGoogle Scholar
Larget, I. (1981). Étude de la rémanence de Bacillus thuringiensis var. israelensis. Revue générale de Botanique 88, 3342.Google Scholar
Larget, I. & Barjac, H. de (1981). Spécificité et principe actif de Bacillus thuringiensis var. israelensis. Bulletin de la Société de Pathologie Exotique 74, 216–27.Google ScholarPubMed
Lüthy, P. (1980). Insecticidal toxins of Bacillus thuringiensis. FEMS Microbiology Letters 8, 17.CrossRefGoogle Scholar
Martin, P. A. W. & Dean, D. H. (1981). Genetics and genetic manipulation of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 299311London and New York: Academic Press.Google Scholar
McGaughey, W. H. (1976). Bacillus thuringiensis for controlling three species of moths in stored grain. Canadian Entomologist 108, 105–12.CrossRefGoogle Scholar
McGaughey, W. H. (1978). Moth control in stored grain: efficacy of Bacillus thuringiensis on corn and method of evaluation using small bins. Journal of Economic Entomology 71, 835–9.CrossRefGoogle Scholar
McGaughey, W. H. (1980). B.t. controls grain insects. Agricultural Research 28, 46.Google Scholar
McLaughlin, R. E. & Fukuda, T. (1982). Effectiveness of Bacillus thuringiensis serotype H-14 against Culex quinquefasciatus in small ditches. Mosquito News (in the Press).Google Scholar
Milner, R. J. (1981). Identification of the Bacillus popilliae group of insect pathogens. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 4559London and New York: Academic Press.Google Scholar
Milner, R. J., Wood, J. T. & Williams, E. R. (1980). The development of milky disease under laboratory and field temperature regimes. Journal of Invertebrate Pathology 36, 203–10.CrossRefGoogle Scholar
Molloy, D., Gaugler, R. & Jamback, H. (1981). Factors influencing efficacy of Bacillus thuringiensis var. israelensis as a biological control agent of black fly larvae. Journal of Economic Entomology 74, 61–4.CrossRefGoogle Scholar
Molloy, D. & Jamback, H. (1981). Field evaluation of Bacillus thuringiensis var. israelensis as a blackfly biocontrol agent and its effect on non-target stream insects. Journal of Economic Entomology 74, 314–18.CrossRefGoogle Scholar
Morris, O. N. (1980). Report of the 1979 Canusa cooperative Bacillus thuringiensis B.t. spray trials. Report FPM-X-40, Forest Pest Management Institute Sault Ste Marie, Ontario.Google Scholar
Mulla, M. S. & Collaborators (1980). Mosquito control with Bacillus thuringiensis. Mosquito Control Research Annual Report 1980, University of California pp. 5762.Google Scholar
Mulligan, F. S. III, Schaefer, C. H. & Miura, T. (1978). Laboratory and field evaluation of Bacillus sphaericus as a mosquito control agent. Journal of Economic Entomology 71, 774–7.CrossRefGoogle Scholar
Mulligan, F. S. III, Schaefer, C. H. & Wilder, W. H. (1980). Efficacy and persistence of Bacillus sphaericus and B. thuringiensis H-14 against mosquitoes under laboratory and field conditions. Journal of Economic Entomology 79, 684–7.CrossRefGoogle Scholar
Myers, P. & Yousten, A. A. (1978). Toxic activity of Bacillus sphaericus SSII-1 for mosquito larvae. Infection and Immunity 19, 1047–53.CrossRefGoogle ScholarPubMed
Myers, P. & Yousten, A. (1980). Localization of a mosquito larval toxin of Bacillus sphaericus 1593. Applied Environmental Microbiology 39, 1205–11.CrossRefGoogle ScholarPubMed
Myers, P. & Yousten, A. (1981). Toxic activity of Bacillus sphaericus for mosquito larvae. Developments in Industrial Microbiology 22, 4151.Google Scholar
Myers, P., Yousten, A. & Davidson, E. (1979). Comparative studies of Bacillus sphaericus SSII-1 and 1593. Canadian Journal of Microbiology 25, 1227–31.CrossRefGoogle ScholarPubMed
Nickerson, K. W. (1980). Structure and function of the Bacillus thuringiensis protein crystal. Biotechnology and Bioengineering 22, 1306–33.CrossRefGoogle Scholar
Nishiitsutsuji-Uwo, J., Endo, Y. & Himeno, M. (1979). Mode of action of Bacillus thuringiensis-endotoxin: effect on TN-368 cells. Journal of Invertebrate Pathology 34, 267–75.CrossRefGoogle Scholar
Norris, J. R. (1964). The classification of Bacillus thuringiensis. Journal of Applied Bacteriology 27, 439–47.CrossRefGoogle Scholar
Padua, L. E., Ohba, M. & Aizawa, K. (1980). The isolates of Bacillus thuringiensis serotype 10 with a highly preferential toxicity to mosquito larvae. Journal of Invertebrate Pathology 36, 180–6.CrossRefGoogle ScholarPubMed
Pruett, C. J. H., Burges, H. D. & Wyborn, C. H. (1980). Effect of exposure to soil on potency and spore viability of Bacillus thuringiensis. Journal of Invertebrate Pathology 35, 168–74.CrossRefGoogle Scholar
Rajalakshmi, S. (1980). Studies on the extraehromosomal DNA of Bacillus thuringiensis var. thuringiensis. Journal of the Indian Institute of Science 62, 2131.Google Scholar
Salleh, M. B. M. (1980). Effect of crystals, spores and exotoxins of six varieties of Bacillus thuringiensis on selected corn insects. Ph.D. thesis, Iowa State University, Ames Iowa.Google Scholar
Sandoz, Inc. (1981). Teknar larvicide for mosquito control. Technical Bulletin, Sandoz Inc., Crop Protection, 480 Camino Del Rio South, San Diego, CA 92108, USA, 7 pp.Google Scholar
Schnepf, H. E. & Whiteley, H. R. (1981). Cloning and the expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proceedings of the National Academy of Sciences, USA 78, 2893–7.CrossRefGoogle ScholarPubMed
Sěbesta, K., Farkas, J., Horská, K. & Vaňková, J. (1981). Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 249281London and New York: Academic Press.Google Scholar
Sinègre, G., Gaven, B. & Jullien, J. L. (1979). Evaluation de l'activité larvicide de Bacillus thuringiensis var. israelensis sur les Culicidés. Performances comparées des formulations commerciales. Impact du produit sur la faune non-cible. Unpublished mimeographed document, EID no. 40. Montpellier, 23 pp.Google Scholar
Sinègre, G., Gaven, B., Jullien, J. L. & Crespo, O. (1979). Activité du sérotype H-14 de Bacillus thuringiensis vis à vis des principales espèces de moustiques anthropophiles du littoral méditerranéen français. Unpublished mimeographed document WHO/VBC/79. 743. 7 pp.Google Scholar
Sinègre, G., Gaven, B., Jullien, J. L., Crespo, O. & Vigo, G. (1979). Activité larvicide de Bacillus thuringiensis var. israelensis sur qxielques espèces de moustiques. Congrès sur la Lutte Contre les Insectes en Milieu Tropical, 1979, Marseille.Google Scholar
Sinègre, G., Gaven, B. & Vigo, G. (1980). Evaluation préliminaire de l'activité de la souche 1593 de Bacillus sphaericus vis à vis de quatre espèces de moustiques du littoral méditerranéen français. Unpublished mimeographed document, WHO/VBC/80. 762.Google Scholar
Singer, S. (1980). Bacillus sphaericus for the control of mosquitoes. Biotechnology and Bioengineering 22, 1335–55.CrossRefGoogle Scholar
Singer, S. (1981 a). Mosquitoes: time to look again at B. sphaericus. Practical Biotechnology 04 1981, 1620.Google Scholar
Singer, S. (1981 b). Potential of Bacillus sphaericus and related spore-forming bacteria for pest control. In Microbial Control of Pests and Plant Diseases 1970–1980 (ed. Burges, H. D.), pp. 283298London and New York: Academic Press.Google Scholar
Smirnoff, W. A. (1967). Influence of temperature on the rate of development of six varieties of the Bacillus cereus group. In Insect Pathology and Microbial Control (ed. van der Laan, P. A.), pp. 125135Amsterdam: North-Holland Publishing Company.Google Scholar
Smith, N. R., Gordon, R. E. & Clark, F. E. (1952). AerobicSpore-forming Bacteria. Monograph number 16, 148 pp. United States Department of Agriculture.Google Scholar
Undeen, A. H. & Berl, D. (1979). Laboratory studies on the effectiveness of Bacillus thuringiensis var. israelensis de Barjac against Simulium damnosum (Diptera: Simuliidae) larvae. Mosquito News 39, 742–5.Google Scholar
Undeen, A. H. & Nagel, W. L. (1978). The effect of Bacillus thuringiensis ONR 60A strain (Goldberg) on Simulium larvae in the laboratory. Mosquito News 38, 524–7.Google Scholar
Undeen, A. H., Takoaka, H. & Hansen, K. (1981). A test of Bacillus thuringiensis var. israelensis de Barjac as a larvicide for Simulium ochraceum, the Central American vector of Onchocerciasis. Mosquito News 41, 3740.Google Scholar
Washino, R. K. & Garcia, R. (1980). Comparison of three formulations of Bacillus thuringiensis var. israelensis H-14 in a California rice field. Mosquito Control Research. Annual Report, 1980, University of California pp. 62–3.Google Scholar
Weiser, J. & Vañková, J. (1978). Toxicity of Bacillus thuringiensis 1897 for blackflies and other freshwater invertebrates. Proceedings of the Second International Colloquium on Invertebrate Pathology, Prague 1978, 243–244.Google Scholar
WHO (1979). Data sheet on the biological control agent Bacillus thuringiensis serotype H-14 (de Barjac 1978). Unpublished mimeographed document WHO/VBC/79.750. VBC/BCDS/79.01.Google Scholar
WHO (1980). Data sheet on the biological control agent Bacillus sphaericus, strain 1593. Unpublished mimeographed document WHO/VBC/80. 777. VBC/BCDS/80.10. 16 pp.Google Scholar
WHO (1981). Informal Consultation on Standardization of Bacillus thuringiensis H-14. Unpublished mimeographed document TDR/BCV/BTH-14/81.1 WHO/VBC/81. 828.Google Scholar
Wickremesinghe, R. S. B. & Mendis, C. L. (1980). Bacillus sphaericus spore from Sri Lanka demonstrating rapid larvicidal activity on Culex quinquesfasciatus. Mosquito News 40, 387–9.Google Scholar
Woodroffe, G. E. (1953). An ecological study of the insects and mites in the nests of certain birds in Britain. Bulletin of Entomological Research 44, 739–72.CrossRefGoogle Scholar
Wraight, S. P., Molloy, D., Jamback, H. & McCoy, P. (1981). Effects of temperature and instar on the efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus strain 1593 against Aedes stimulans larvae. Journal of Invertebrate Pathology 38, 7887.CrossRefGoogle Scholar
Yamamoto, T. & McLaughlin, R. E. (1981). Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochemical and Biophysical Research Communications 103, 414421.CrossRefGoogle Scholar
Yousten, A. A. (1973). Effect of the Bacillus thuringiensis δ-endotoxin on an insect predator which has consumed intoxicated cabbage looper larvae. Journal of Invertebrate Pathology 21, 312–14.CrossRefGoogle Scholar
Yousten, A. A., Barjac, H. de, Hedrick, J., Cosmao-Dumanoir, V. & Myers, P. (1980). Comparison between bacteriophage typing and serotyping for the differentiation of Bacillus sphaericus strains. Annates de Microbiologie (Institut Pasteur) 131B, 297308.Google Scholar