Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T01:00:16.126Z Has data issue: false hasContentIssue false

Comparative study on the infection rates of different Glossina species for East and West African Trypanosoma vivax stocks

Published online by Cambridge University Press:  06 April 2009

S. K. Moloo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
S. B. Kutuza
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
J. Desai
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE

Summary

Teneral male Olossina morsitans centralis, G. austeni, G. palpalis palpalis, G. p. gambiensis, G. fuscipes fuscipes, G. tachinoides and G. brevipalpis were fed on the flanks of Boran calves infected with Trypanosoma vivax stock ILRAD 2241 isolated from a cow in Likoni, Kenya; stock ILRAD 2337 isolated from a cow in Galana, Kenya; stock ILRAD 1392 isolated from a cow in Nigeria; or, stock EATRO 1721 isolated from G. m. submorsitans in Nigeria. The tsetse were fed on the infected hosts for 24 days and were then dissected to determine the infection rates. In G. m. centralis and G. brevipalpis, the mature infection rates of T. vivax from Kenya were 61·1 %, and 75·3% for ILRAD 2241, and 36·2% and 58·2% for ILRAD 2337, respectively. In G. austeni and in the four palpalis group of tsetse, the rates for these two stocks were very low and ranged from 0% in G. p. palpalis to 1·8% in G. austeni for ILRAD 2241 and from 0% in G. f. fuscipes to 5% in G. tachinoides for ILRAD 2337. In contrast, the hypopharyngeal infection rates of T. vivax from Nigeria were quite high in all the 7 tsetse species and sub-species. They ranged from 55·5% in G. austeni to 919% in G. p. gambiensis for ILRAD 1392, and from 71·4% in G. austenei to 97·1 % in G. brevipalpis for EATRO 1721. It is suggested that successful establishment of T. vivax infection in a particular tsetse species could depend on the biochemical characteristics of its attachment sites in the food canal and the efficiency of bloodstream trypomastigotes of a particular T. vivax stock to attach to such sites and undergo complete development to meta-trypanosomes in the hypopharynx of the vector.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruce, D., Hamerton, A. E., Bateman, H. R. & Mackie, F. P. (1910). The development of trypanosomes in tsetse flies. Proceedings of the Royal Society of London, B 82, 382–8.Google Scholar
Bruce, D., Hamerton, A. E., Bateman, H. R., Mackie, F. P. & Bruce, M. (1911). Further researches on the development of Trypanosoma vivax in laboratory-bred Glossina palpalis. Report on the Sleeping Sickness Commission of the Royal Society 11, 50–3.Google Scholar
Curtis, C. F. & Graves, P. M. (1983). Genetic variation in the ability of insects to transmit filariae, trypanosomes and malarial parasites. In Current Topics in Vector Research, (ed. Harris, K. F.) pp. 3162. New York: Praeger Scientific.Google Scholar
Ford, J. & Katondo, K. M. (1977). Maps of tsetse flies (Glossina) distribution in Africa, 1973 according to sub-genetic groups on scale of 1: 5 000 000 (plus a set of 9 maps in colour). Bulletin of Animal Health and Production in Africa 25, 187–93.Google Scholar
Gardiner, P. R., Webster, P., Jenni, L. & Moloo, S. K. (1986). Metacyclic Trypanosoma vivax possess a surface coat. Parasitology 92, 7582.CrossRefGoogle ScholarPubMed
Ibrahim, E. A. R., Ingram, G. A. & Molyneux, D. H. (1984). Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmedizin und Parasitologie 35, 151–6.Google ScholarPubMed
Jordan, A. M. (1965). The hosts of Glossina as the main factor affecting trypanosome infection rates of tsetse flies in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 423–31.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Leeflang, P., Buys, J. & Blotkamp, C. (1976). Studies on Trypanosoma vivax: infectivity and serial maintenance of natural bovine isolates in mice. International Journal for Parasitology 6, 413–17.CrossRefGoogle ScholarPubMed
Lloyd, L. & Johnson, W. B. (1924). The trypanosome infections of tsetse flies in Northern Nigeria and a new method of estimation. Bulletin of Entomological Research 14, 265–88.CrossRefGoogle Scholar
Maudlin, I. (1982). Inheritance of susceptibility to Trypanosoma congolense infection in Glossina morsitans. Annals of Tropical Medicine and Parasitology 76, 225–7.CrossRefGoogle ScholarPubMed
Maudlin, I. & Dukes, P. (1985). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. I. Selection of susceptible and refractory lines of Glossina morsitans morsitans. Annals of Tropical Medicine and Parasitology 79, 317–24.CrossRefGoogle ScholarPubMed
Maudlin, I., Dukes, P., Luckins, A. G. & Hudson, K. M. (1986). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. II. Susceptibility of selected lines of Glossina morsitans morsitans to different stocks and species of trypanosome. Annals of Tropical Medicine and Parasitology 80, 97105.CrossRefGoogle ScholarPubMed
Maudlin, I. & Ellis, D. S. (1985). Association between intracellular rickettsial-like infection of midgut cells and susceptibility to trypanosome infection in Glossina spp. Zeitschrift für Parasitenkunde 71, 683–7.CrossRefGoogle ScholarPubMed
Meek, S. R. & Macdonald, W. W. (1982). Studies on the inheritance of susceptibility to infection with Brugia pahangi and Wuchereria bancrofti in the Aedes scutellaris group of mosquitoes. Annals of Tropical Medicine and Parasitology 76, 347–54.CrossRefGoogle ScholarPubMed
Moloo, S. K. (1973). Relationships between hosts and trypanosome infection rates of Glossina swynnertoni Aust. in the Serengeti National Park, Tanzania. Annals of Tropical Medicine and Parasitology 67, 205–11.CrossRefGoogle ScholarPubMed
Moloo, S. K. (1982). Studies on the transmission of two East African stocks of Trypanosoma vivax in cattle, goats, rabbits, rats and mice. Acta Tropica 39, 51–9.Google ScholarPubMed
Moloo, S. K. (1985). Distribution of Glossina species in Africa. Acta Tropica 42, 275–81.Google ScholarPubMed
Moloo, S. K. & Kutuza, S. B. (1969). The laboratory maintenance of Glossina morsitans Westw. East African Trypanosomiasis Research Organization Report 1969, 73–6.Google Scholar
Pereira, M. E. A., Andrade, A. F. B. & Ribeiro, J. M. C. (1981). Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211, 597600.CrossRefGoogle ScholarPubMed
Vickerman, K. (1973). The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. Journal of Protozoology 20, 394404.CrossRefGoogle ScholarPubMed
Wellde, B. T., Chumo, D. A., Adoyo, M., Kovatch, R. M., Mwongela, G. N. & Opiyo, E. A. (1983). Haemorrhagic syndrome in cattle associated with Trypanosoma vivax infection. Tropical Animal Health and Production 15, 95102.CrossRefGoogle ScholarPubMed
Woo, P. T. K. (1969). The haematocrit centrifuge for the detection of trypanosomes in blood. Canadian Journal of Zoology 47, 921–3.CrossRefGoogle ScholarPubMed