Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T10:10:47.576Z Has data issue: false hasContentIssue false

Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from Northeast Borneo and Thailand

Published online by Cambridge University Press:  24 August 2012

MUN-YIK FONG*
Affiliation:
Department of Parasitology, Faculty of Medicine, University of Malaya50603 Kuala Lumpur, Malaysia
RAHMAH NOORDIN
Affiliation:
Institute for Research in Molecular Medicine, Universiti Sains Malaysia11800 USM, Penang, Malaysia
YEE-LING LAU
Affiliation:
Department of Parasitology, Faculty of Medicine, University of Malaya50603 Kuala Lumpur, Malaysia
FEI-WEN CHEONG
Affiliation:
Department of Parasitology, Faculty of Medicine, University of Malaya50603 Kuala Lumpur, Malaysia
MUHAMMAD HAFIZNUR YUNUS
Affiliation:
Institute for Research in Molecular Medicine, Universiti Sains Malaysia11800 USM, Penang, Malaysia
ZULKARNAIN MD IDRIS
Affiliation:
Institute for Research in Molecular Medicine, Universiti Sains Malaysia11800 USM, Penang, Malaysia
*
*Corresponding author: Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. Tel: + 603 79674755. Fax: + 603 79674754. E-mail: [email protected]

Summary

Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Areekit, S., Khuchareontaworn, S., Kanjanavas, P., Sriyapai, T., Pakpitchareon, A., Khawsak, P. and Chansiri, K. (2009 a). Molecular genetics analysis for co-infection of Brugia malayi and Brugia pahangi in cat reservoirs based on internal transcribed spacer region 1. Southeast Asian Journal of Tropical Medicine and Public Health 40, 3034.Google ScholarPubMed
Areekit, S., Singhaphan, P., Khuchareontaworn, S., Kanjanavas, P., Sriyaphai, T., Pakpitchareon, A., Khawsak, P. and Chansiri, K. (2009 b). Intraspecies variation of Brugia spp. in cat reservoirs using complete ITS sequences. Parasitology Research 104, 14651469.Google ScholarPubMed
Barclay, R. (1969). Filariasis in Sabah, East Malaysia. Annals of Tropical Medicine and Parasitology 63, 473488.CrossRefGoogle ScholarPubMed
Bhandari, Y., Dabir, P., Nandhakumar, K., Dayananda, K. M., Shouche, Y. S. and Reddy, M. V. (2005). Analysis of polymorphism of 18S rRNA gene in Wuchereria bancrofti microfilariae. Microbiology and Immunology 49, 909914.CrossRefGoogle ScholarPubMed
Edeson, J. F. B. and Wilson, T. (1964). The epidemiology of filariasis due to Wuchereria bancrofti and Brugia malayi. Annual Review of Entomology 9, 245268.CrossRefGoogle Scholar
Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. and Yoder, A. D. (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution 54, 291301.CrossRefGoogle ScholarPubMed
Hillis, D. M. and Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411453.CrossRefGoogle ScholarPubMed
Hoti, S. L., Thangadurai, R., Dhamodharan, R. and Das, P. K. (2008). Genetic heterogeneity of Wuchereria bancrofti populations at spatially hierarchical levels in Pondicherry and surrounding areas, south India. Infection, Genetics and Evolution 8, 644652.CrossRefGoogle ScholarPubMed
Melrose, W. D. (2002). Lymphatic filariasis: new insights into an old disease. International Journal for Parasitology 32, 947960.CrossRefGoogle ScholarPubMed
Nuchprayoon, S., Junpee, A., Nithiuthai, S., Chungpivat, S., Suvannadabba, S. and Poovorawan, Y. (2006). Detection of filarial parasites in domestic cats by PCR-RFLP of ITS1. Veterinary Parasitology 140, 366372.CrossRefGoogle ScholarPubMed
Nuchprayoon, S., Junpee, A. and Poovorawan, Y. (2007). Random Amplified Polymorphic DNA (RAPD) for differentiation between Thai and Myanmar strains of Wuchereria bancrofti. Filaria Journal 6, 6.CrossRefGoogle ScholarPubMed
Nuchprayoon, S., Junpee, A., Poovorawan, Y. and Scott, A. L. (2005). Detection and differentiation of filarial parasites by universal primers and polymerase chain reaction-restriction fragment length polymorphism analysis. American Journal of Tropical Medicine and Hygiene 73, 895900.CrossRefGoogle ScholarPubMed
Patra, K. P., Ramu, T., Hoti, S. L., Pragasam, G. S. and Das, P. K. (2007). Identification of a molecular marker for genotyping human lymphatic filarial nematode parasite Wuchereria bancrofti. Experimental Parasitology 116, 5965.CrossRefGoogle ScholarPubMed
Pradeep Kumar, N., Patra, K. P., Hoti, S. L. and Das, P. K. (2002). Genetic variability of the human filarial parasite, Wuchereria bancrofti in South India. Acta Tropica 82, 6776.CrossRefGoogle ScholarPubMed
Rahmah, N., Shenoy, R. K., Nutman, T. B., Weiss, N., Gilmour, K., Maizels, R. M., Yazdanbakhsh, M. and Sartono, E. (2003). Multicentre laboratory evaluation of Brugia Rapid dipstick test for detection of brugian filariasis. Tropical Medicine & International Health 8, 895900.CrossRefGoogle ScholarPubMed
Rao, R. U., Weil, G. J., Fischer, K., Supali, T. and Fisher, P. (2006). Detection of Brugia parasite DNA in human blood by real-time PCR. Journal of Clinical Microbiology 44, 38873893.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thangadurai, R., Hoti, S. L., Kumar, N. P. and Das, P. K. (2006). Phylogeography of human lymphatic filarial parasite, Wuchereria bancrofti in India. Acta Tropica 98, 297304.CrossRefGoogle ScholarPubMed
Weider, L. J., Elser, J. J., Crease, T. J., Mateos, M., Cotner, J. B. and Markow, T. A. (2005). The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms. Annual Review of Ecology, Evolution, and Systematics 36, 219242.CrossRefGoogle Scholar
Xie, H., Bain, O. and Williams, S. A. (1994 a). Molecular phylogenetic studies on Brugia filariae using HhaI repeat sequences. Parasite 1, 255260.CrossRefGoogle Scholar
Xie, H., Bain, O. and Williams, S. A. (1994 b) Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. Parasite 1, 141151.CrossRefGoogle ScholarPubMed