Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:21:31.940Z Has data issue: false hasContentIssue false

Codon usage in Cryptosporidium parvum differs from that in other Eimeriorina

Published online by Cambridge University Press:  06 April 2009

S. Char*
Affiliation:
Digestive Diseases Research Centre, The Medical College of St Bartholomew's Hospital, London EC1M 6BQ
P. Kelly
Affiliation:
Digestive Diseases Research Centre, The Medical College of St Bartholomew's Hospital, London EC1M 6BQ
A. Naeem
Affiliation:
Digestive Diseases Research Centre, The Medical College of St Bartholomew's Hospital, London EC1M 6BQ
M. J. G. Farthing
Affiliation:
Digestive Diseases Research Centre, The Medical College of St Bartholomew's Hospital, London EC1M 6BQ
*
* Corresponding author.

Summary

Codon usage of Crytosporidium parvum was compared with those of other Eimeriorina Toxoplasma gondii and Eimeria tenella and revealed a biased use of synonymous codons with a preference for NNU (40·0%) and NNA (33·4%). There was no close resemblance of the codon usage of C. parvum to T. gondii (correlation coefficient, r = 0·14) or E. tenella (r = 0·14) but it was similar to Entamoeba histolytica (r = 0·75) and Plasmodium falciparum (r = 0·5). Analysis of the codon usage in homologous gene sequences (actin, β-tubulin) also failed to reveal a close relationship between C. parvum and T. gondii or E. tenella. The low usage codons in C. parvum were most frequently used codons in T. gondii and E. tenella. These observations are consistent with 18S rRNA sequence analysis which shows no close relationship of Cryptosporidium with other Eimeriorina (Sarcocystis, Toxoplasma and Eimeria) and questions the validity of the current classification of C. parvum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. G. E. & Kurland, C. G. (1990). Codon preferences in free living micro-organisms. Microbiological Reviews 54, 198210.CrossRefGoogle Scholar
Barta, J. R. (1989). Phylogenetic analysis of the class Sporozoea (Phylum Apicomplexa Levine, 1970): evidence for the independent evolution of heteroxenous life cycles. Journal of Parasitology 75, 195206.CrossRefGoogle ScholarPubMed
Barta, J. R., Jenkins, M. C. & Danforth, H. D. (1991). Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the Apicomplexa is supported. Molecular Biology and Evolution 8, 345–55.Google ScholarPubMed
Cai, J., Collins, M. D., Mcdonald, V. & Thompson, D. E. (1992). PCR cloning and nucleotide sequence determination of the 18S rRNA genes and internal transcribed spacer 1 of the protozoan parasites Cryptosporidium parvum and Cryptosporidium muris. Biochimica et Biophysica Act 1131, 317–20.CrossRefGoogle ScholarPubMed
Char, s. & Farthing, M. J. G. (1992). Codon usage in Entamoeba histolytica. International Journal for Parasitology 22, 381–3.CrossRefGoogle ScholarPubMed
Ellis, J., Griffin, H., Morrison, D. & Johnson, A. M. (1993). Analysis of dinucleotide frequency and codon usage in the phylum Apicomplexa. Gene 126, 163–70.CrossRefGoogle ScholarPubMed
Ellis, J., Luton, K., Baverstock, P. R., Brindley, P. J., Nimmo, K. A. & Johnson, A. M. (1994). The phylogeny of Neospora caninum. Molecular and Biochemical Parasitology 64, 303–11.CrossRefGoogle ScholarPubMed
Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pave, A. (1980). Codon catalog usage and the genome hypothesis. Nucleic Acids Research 8, r49–r62.CrossRefGoogle ScholarPubMed
Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution 2, 1334.Google ScholarPubMed
Jenkins, M. C., Fayer, R., Upton, S. & Tilley, M. (1993). Cloning and expression of cDNA encoding epitopes shared by 15- and 60-kilodalton proteins of Cryptosporidium parvum sporozoites. Infection and Immunity 61, 2377–82.CrossRefGoogle ScholarPubMed
Johnson, A. M., Fielke, R., Lumb, R. & Baverstock, P. R. (1990). Phylogenetic relationships of Cryptosporidium determined by ribosomal RNA comparison. International Journal for Parasitology 20, 141–7.CrossRefGoogle Scholar
Kim, K., Gooze, L., Petersen, C., Gut, J. & Nelson, R. G. (1992). Isolation, sequence and molecular karyotype analysis of the actin gene of Cryptosporidium parvum. Molecular and Biochemical Parasitology 50, 105–13.CrossRefGoogle ScholarPubMed
Lally, N. C., Baird, G. D., Mcquay, S. J., Wright, F. & Oliver, J. J. (1992). A 2539-base pair DNA fragment from Cryptosporidium parvum encoding a repetitive oocyst protein. Molecular and Biochemical Parasitology 56, 6978.CrossRefGoogle ScholarPubMed
Levine, N. D. (1984). Taxonomy and review of the coccidian genus Cryptosporidium (Protozoa, Apicomplexa). Journal of Protozoology 31, 94–8.CrossRefGoogle ScholarPubMed
Levine, N. D. (1985). Phylum Apicomplexa Levine, 1970. In An Illustrated Guide to the Protozoa (ed. Lee, J. J., Hutner, S. H. & Bovee, E. C.), pp. 322357. Lawrence, Kansas: Society of Protozoologists, Allen Press.Google Scholar
Maruyama, T., Gojobori, T., Aota, S. & Ikemura, T. (1986). Codon usage tabulated from GenBank genetic sequence data. Nucleic Acids Research 14, r151–r153.CrossRefGoogle ScholarPubMed
Osawa, S., Jukes, T. H., Watanabe, K. & Muto, A. (1992). Recent evidence for evolution of the genetic code. Microbiological Reviews 56, 229–64.CrossRefGoogle ScholarPubMed
Vetterling, J. M., Takeuchi, A. & Madden, P. A. (1971). Ultrastructure of Cryptosporidium wrairi from the guinea pig. Journal of Protozoology 18, 248–60.CrossRefGoogle ScholarPubMed
Wada, K., Aota, S., Tsuchiya, R., Ishibashi, F., Gojobori, T. & Ikemura, T. (1990). Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Research 18, 2367–9.CrossRefGoogle ScholarPubMed
Wada, K., Wada, Y., Doi, H., Ishibashi, F., Gojobori, T. & Ikemura, T. (1992). Codon usage tabulated from the GenBank sequence data. Nucleic Acids Research 20, 2111–18.CrossRefGoogle ScholarPubMed
Zhang, S., Zubay, G. & Goldman, E. (1991). Low-Usage codons in Escherichia coli, yeast, fruitfly and primates. Gene 105, 6172.CrossRefGoogle Scholar