Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T13:15:48.576Z Has data issue: false hasContentIssue false

Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis

Published online by Cambridge University Press:  18 July 2011

EMMA CARMELO*
Affiliation:
Instituto de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. Av. Astrofisico Fco. Sanchez, s/n. 38202 La Laguna, Tenerife, Spain
GLORIA GONZÁLEZ
Affiliation:
Instituto de Biotecnología, Universidad de Granada. Campus Fuentenueva 18071, Granada, Spain
TERESA CRUZ
Affiliation:
Instituto de Biotecnología, Universidad de Granada. Campus Fuentenueva 18071, Granada, Spain
ANTONIO OSUNA
Affiliation:
Instituto de Biotecnología, Universidad de Granada. Campus Fuentenueva 18071, Granada, Spain
MARIANO HERNÁNDEZ
Affiliation:
Instituto de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. Av. Astrofisico Fco. Sanchez, s/n. 38202 La Laguna, Tenerife, Spain
BASILIO VALLADARES
Affiliation:
Instituto de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. Av. Astrofisico Fco. Sanchez, s/n. 38202 La Laguna, Tenerife, Spain
*
*Corresponding author: Instituto de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. Av. Astrofisico Fco. Sanchez, s/n. 38202 La Laguna, Tenerife, Spain. Tel: 0034 922316502 ext. 6109. Fax: 0034 922318514. E-mail: [email protected]

Summary

Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baca, A. M. and Hol, W. G. (2000). Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. International Journal for Parasitology 30, 113118.CrossRefGoogle ScholarPubMed
Bharath, M. M., Ramesh, S., Chandra, N. R. and Rao, M. R. (2002). Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 41, 76177627.CrossRefGoogle ScholarPubMed
Carmelo, E., Barillà, D., Golovanov, A. P., Lian, L. Y., Derome, A. and Hayes, F. (2005). The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. The Journal of Biological Chemistry 280, 2868328691.CrossRefGoogle ScholarPubMed
Carmelo, E., Martínez, E., González, A. C., Piñero, J. E., Patarroyo, M. E., Del Castillo, A. and Valladares, B. (2002). Antigenicity of Leishmania braziliensis histone H1 during cutaneous leishmaniasis: localization of antigenic determinants. Clinical and Diagnostic Laboratory Immunology 9, 808811.Google ScholarPubMed
Carter, G. J. and Van Holde, K. (1998). Self-association of linker histone H5 and of its globular domain: evidence for specific self-contacts. Biochemistry 37, 1247712488.CrossRefGoogle ScholarPubMed
Churchill, M. E. and Suzuki, M. (1989). ‘SPKK’ motifs prefer to bind to DNA at A/T-rich sites. The EMBO Journal 8, 41894195.CrossRefGoogle ScholarPubMed
Ellen, T. P. and van Holde, K. E. (2004). Linker histone interaction shows divalent character with both supercoiled and linear DNA. Biochemistry 43, 78677872.CrossRefGoogle ScholarPubMed
Hecker, H., Betschart, B., Bender, K., Burri, M. and Schlimme, W. (1994). The chromatin of trypanosomes. International Journal for Parasitology 24, 809819.CrossRefGoogle ScholarPubMed
Hendzel, M. J., Lever, M. A., Crawford, E. and Th'ng, J. P. (2004). The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. The Journal of Biological Chemistry 279, 2002820034.CrossRefGoogle ScholarPubMed
Kerr, S. F. (2006). Molecular trees of trypanosomes incongruent with fossil records of hosts. Memórias do Instituto Oswaldo Cruz 101, 2530.CrossRefGoogle ScholarPubMed
Martínez, E., Thomas, M. C., Alonso, V., Carmelo, E., González, A. C., Del Castillo, A. and Valladares, B. (2002). Cloning and molecular characterization of the cDNA encoding histone H1 from Leishmania braziliensis. Journal of Parasitology 88, 199203.CrossRefGoogle ScholarPubMed
Masina, S., Zangger, H., Rivier, D. and Fasel, N. (2007). Histone H1 regulates chromatin condensation in Leishmania parasites. Experimental Parasitology 116, 8387.CrossRefGoogle ScholarPubMed
Momen, H. and Cupolillo, E. (2000). Speculations on the origin and evolution of the genus Leishmania. Memórias do Instituto Oswaldo Cruz 95, 583588.CrossRefGoogle ScholarPubMed
Nakayama, T., Ishii, T., Hotta, T. and Mizuno, K. (2008). Radial microtubule organization by histone H1 on nuclei of cultured tobacco BY-2 cells. The Journal of Biological Chemistry 283, 1663216640.CrossRefGoogle ScholarPubMed
Noll, T. M., Desponds, C., Belli, S. I., Glaser, T. A. and Fasel, N. J. (1997). Histone H1 expression varies during the Leishmania major life cycle. Molecular and Biochemical Parasitology 84, 215227.CrossRefGoogle ScholarPubMed
Panyim, S. and Chalkley, R. (1971). The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method. The Journal of Biological Chemistry 246, 75577560.CrossRefGoogle ScholarPubMed
Papageorgiou, F. T. and Soteriadou, K. P. (2002). Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infection and Immunity 70, 69766986.CrossRefGoogle ScholarPubMed
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L., Faulconbridge, A., Jeffares, D., Depledge, D. P., Oyola, S. O., Hilley, J. D., Brito, L. O., Tosi, L. R., Barrell, B., Cruz, A. K., Mottram, J. C., Smith, D. F. and Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847.CrossRefGoogle ScholarPubMed
Pellé, R., and Murphy, N. B. (1993). In vivo UV-cross-linking hybridization: a powerful technique for isolating RNA binding proteins. Application to trypanosome mini-exon derived RNA. Nucleic Acids Research 21, 24532458.CrossRefGoogle ScholarPubMed
Salvati, D., Conforti, S., Conte, M., Matassa, D. S., Fucci, L. and Piscopo, M. (2008). Self-association of Chaetopterus variopedatus sperm histone H1-like. Relevance of arginine content and possible physiological role. Acta Biochimica Polonica 55, 701706.CrossRefGoogle ScholarPubMed
Smirlis, D., Boleti, H., Gaitanou, M., Soto, M. and Soteriadou, K. (2009). Leishmania donovani Ran-GTPase interacts at the nuclear rim with linker histone H1. The Biochemical Journal 424, 367374.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thomas, J. O., Rees, C. and Finch, J. T. (1992). Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Research 20, 187194.CrossRefGoogle ScholarPubMed
Woodcock, C. L., Skoultchi, A. I. and Fan, Y. (2006). Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Research 14, 1725.CrossRefGoogle ScholarPubMed
World Health Organization (2010). Control of the Leishmaniases. WHO Technical Report Series No 949. World Health Organization, Geneva, Switzerland. http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf.Google Scholar
Zangger, H., Mottram, J. C. and Fasel, N. (2002). Cell death in Leishmania induced by stress and diferentiation: programmed cell death or necrosis? Cell Death & Differentiation 9, 11261139.CrossRefGoogle ScholarPubMed